Using Multiple Real-World Dermoscopic Photographs of One Lesion Improves Melanoma Classification via Deep Learning
Research output: Contribution to journal › Letter › Contributed › peer-review
Contributors
Details
| Original language | English |
|---|---|
| Pages (from-to) | 1028-1031 |
| Number of pages | 4 |
| Journal | Journal of the American Academy of Dermatology |
| Volume | 90 |
| Issue number | 5 |
| Publication status | Published - May 2024 |
| Peer-reviewed | Yes |
External IDs
| ORCID | /0000-0003-4340-9706/work/152545758 |
|---|---|
| ORCID | /0000-0002-2164-4644/work/152545846 |
| unpaywall | 10.1016/j.jaad.2023.11.065 |
| Scopus | 85184078064 |
| Mendeley | 4d305500-a5f4-3d26-8cf8-8213f7d093d3 |
| ORCID | /0000-0002-3730-5348/work/198594490 |
Keywords
Keywords
- uncertainty estimation, deep learning, diagnostic accuracy, dermatology, robustness, diagnosis, melanoma, artificial intelligence, dermoscopy