Recent Challenges in the Fabrication of Vertical Silicon Nanowire Transistors

Research output: Contribution to journalReview articleContributedpeer-review

Contributors

  • Cigdem Cakirlar - , NaMLab - Nanoelectronic materials laboratory gGmbH (Author)
  • Jonas Müller - , Université de Toulouse (Author)
  • Christoph Beyer - , NaMLab - Nanoelectronic materials laboratory gGmbH (Author)
  • Konstantinos Moustakas - , Université de Toulouse (Author)
  • Bruno Neckel Wesling - , NaMLab - Nanoelectronic materials laboratory gGmbH, Université de Bordeaux (Author)
  • Giulio Galderisi - , NaMLab - Nanoelectronic materials laboratory gGmbH (Author)
  • Sylvain Pelloquin - , Université de Toulouse (Author)
  • Cristell Maneux - , Université de Bordeaux (Author)
  • Thomas Mikolajick - , Chair of Nanoelectronics, NaMLab - Nanoelectronic materials laboratory gGmbH (Author)
  • Guilhem Larrieu - , Université de Toulouse (Author)
  • Jens Trommer - , NaMLab - Nanoelectronic materials laboratory gGmbH (Author)

Abstract

Vertical silicon nanowire transistors are among the most promising device concepts for future low-power electronics due to their gate-all-around nature as well as their 3D stacking potential. In this work we review the current status of transistor fabrication on vertical silicon nanostructures and identify the most important challenges for successful process integration. Channel patterning, source/drain contact formation, gate-deposition and spacer engineering are identified as key steps independent on the actual process integration sequence. We conclude the paper with two emerging device examples and discuss the influence of the processing challenges on the transistor design.

Details

Original languageEnglish
Pages (from-to)356-362
Number of pages7
JournalIEEE transactions on nanotechnology
Volume24
Publication statusPublished - 2025
Peer-reviewedYes

External IDs

ORCID /0000-0003-3814-0378/work/191039703

Keywords

Keywords

  • junctionless transistors, Process integration, reconfigurable transistors, scaling, silicon nanowires