Investigation of variable axial reinforcements of lateral pressure vessel openings using element level pipe specimens
Research output: Contribution to book/conference proceedings/anthology/report › Conference contribution › Contributed › peer-review
Contributors
Abstract
This research demonstrates the potential of using localized, variable axial Tailored Fibre Placement (TFP) reinforcements to mitigate stress concentrations around lateral openings in (aerodynamic shaped) pressure vessels (e.g. for hydrogen storage). The study introduces a virtual-physical design process to develop a methodology for the conception and design of these structural reinforcements. Starting with the design of a suitable laminate structure for high pressure tanks, a representative layer sequence is derived for tube specimens corresponding to the element level. Verification of the developed finite element (FE) models and the design approach is carried out by pressure testing on actual tubes under pressure vessel loading conditions using water or oil. This approach integrates advanced materials engineering concepts with practical testing and represents a comprehensive strategy for improving the structural integrity of high pressure systems.
Details
Original language | English |
---|---|
Title of host publication | ECCM21 - Proceedings of the 21st European Conference on Composite Materials |
Publisher | European Society for Composite Materials (ESCM) |
Pages | 773-777 |
Number of pages | 5 |
Volume | 8 |
ISBN (print) | 978-2-912985-01-9 |
Publication status | Published - 2 Jul 2024 |
Peer-reviewed | Yes |
Conference
Title | 21st European Conference on Composite Materials |
---|---|
Abbreviated title | ECCM 21 |
Conference number | 21 |
Duration | 2 - 5 July 2024 |
Website | |
Degree of recognition | International event |
Location | La Cité Nantes Congress Centre |
City | Nantes |
Country | France |
External IDs
ORCID | /0000-0003-1370-064X/work/163294537 |
---|---|
ORCID | /0000-0002-3604-1029/work/163295260 |
Keywords
Keywords
- composite, hydrogen storage, virtual-physical design process, Tailored Fibre Placement