High-Performance Operation and Solder Reflow Compatibility in BEOL-Integrated 16-Kb HfO₂: Si-Based 1T-1C FeRAM Arrays: Si-Based 1T-1C FeRAM Arrays

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

  • T. Francois - , Université Grenoble Alpes, Aix-Marseille Université (Author)
  • J. Coignus - , Université Grenoble Alpes (Author)
  • A. Makosiej - , Université Grenoble Alpes (Author)
  • B. Giraud - , Université Grenoble Alpes (Author)
  • C. Carabasse - , Université Grenoble Alpes (Author)
  • J. Barbot - , Université Grenoble Alpes (Author)
  • S. Martin - , Université Grenoble Alpes (Author)
  • N. Castellani - , Université Grenoble Alpes (Author)
  • T. Magis - , Université Grenoble Alpes (Author)
  • H. Grampeix - , Université Grenoble Alpes (Author)
  • S. Van Duijn - , Université Grenoble Alpes (Author)
  • C. Mounet - , Université Grenoble Alpes (Author)
  • P. Chiquet - , Aix-Marseille Université (Author)
  • U. Schroeder - , TUD Dresden University of Technology (Author)
  • S. Slesazeck - , TUD Dresden University of Technology (Author)
  • T. Mikolajick - , Chair of Nanoelectronics, NaMLab - Nanoelectronic materials laboratory gGmbH (Author)
  • E. Nowak - , Université Grenoble Alpes (Author)
  • M. Bocquet - , Aix-Marseille Université (Author)
  • N. Barrett - , Université Paris-Saclay (Author)
  • F. Andrieu - , Université Grenoble Alpes (Author)
  • L. Grenouillet - , Université Grenoble Alpes (Author)

Abstract

16-kb 1T-1C ferroelectric random access memory (FeRAM) arrays are demonstrated for 130-nm node technology with TiN/HfO2:Si/TiN ferroelectric capacitors integrated into the back-end-of-line (BEOL). The 0- A nd 1-state distributions measured on the arrays demonstrate perfect yield at 4.8-V operation, with extrapolations suggesting that the memory window (MW) is still open at six-sigma statistics. A programming speed down to 4 ns at 4 V is highlighted at the array level, together with an endurance up to 107 cycles. Promising data retention up to 104 s at 125 °C is measured on the arrays and, for the first time, solder reflow compatibility is demonstrated for HfO2-based FeRAM. The MW on 16-kb arrays remains open when using a 2.5-V programming voltage and when the capacitor area is decreased from 0.36 μm2 down to 0.16 μm2, with a calculated programming energy lower than 100 fJ/bit. These results pave the way to competitive ultralow-power embedded nonvolatile memories (NVM) at more advanced nodes.

Details

Original languageEnglish
Pages (from-to)2108-2114
Number of pages7
JournalIEEE transactions on electron devices : ED
Volume69
Issue number4
Publication statusPublished - 1 Jan 2022
Peer-reviewedYes

External IDs

unpaywall 10.1109/ted.2021.3138360
ORCID /0000-0003-3814-0378/work/142256124

Keywords

DFG Classification of Subject Areas according to Review Boards

Keywords

  • 130-nm technology node, 16-kb array, data retention, emerging memory, endurance, ferroelectric memories, ferroelectric random access memory (FeRAM), hafnium oxide, HfO2:Si, nonvolatile memory (NVM), solder reflow