A Study on Imprint Behavior of Ferroelectric Hafnium Oxide Caused by High-Temperature Annealing
Research output: Contribution to journal › Research article › Contributed › peer-review
Contributors
Abstract
Hafnium oxide is found to be a favorable material for ferroelectric nonvolatile memory devices. Its compatibility with complementary metal–oxide–semiconductor processes, the relatively low crystallization temperature when zirconium-doped, and the thickness scaling are among the advantageous properties of hafnium oxide. Different requirements must be fulfilled for different applications of hafnium oxide. Herein, high-temperature annealing and operation conditions are analyzed in order to investigate nonvolatile memories for automotive applications. A strong imprint behavior (shift in coercive voltages) is observed after annealing hafnium–zirconium–oxide thin films at temperatures varied between 100 and 200 °C. The imprint behavior is a significant challenge in many applications. Therefore, to reduce/recover the undesirable imprint behavior caused by high-temperature treatment, two different ways are successfully examined and delineated here: endurance cycling and applying high electric fields.
Details
Original language | English |
---|---|
Article number | 2300067 |
Number of pages | 7 |
Journal | Physica Status Solidi (A) Applications and Materials Science |
Volume | 220 |
Issue number | 7 |
Publication status | Published - 7 Feb 2023 |
Peer-reviewed | Yes |
External IDs
Scopus | 85149586152 |
---|---|
ORCID | /0000-0002-2484-4158/work/150330976 |
Keywords
Research priority areas of TU Dresden
Keywords
- ferroelectric, hafnium zirconium oxide, high-temperature reliability, imprint, memory