Transcriptional regulation of the N ε-fructoselysine metabolism in Escherichia coli by global and substrate-specific cues

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Benedikt Graf von Armansperg - , Ludwig-Maximilians-Universität München (LMU) (Autor:in)
  • Franziska Koller - , Ludwig-Maximilians-Universität München (LMU) (Autor:in)
  • Nicola Gericke - , Ludwig-Maximilians-Universität München (LMU) (Autor:in)
  • Michael Hellwig - , Professur für Spezielle Lebensmittelchemie, Technische Universität Dresden (Autor:in)
  • Pravin Kumar Ankush Jagtap - , European Molecular Biology Laboratory (EMBL) Heidelberg (Autor:in)
  • Ralf Heermann - , Johannes Gutenberg-Universität Mainz (Autor:in)
  • Janosch Hennig - , European Molecular Biology Laboratory (EMBL) Heidelberg (Autor:in)
  • Thomas Henle - , Professur für Lebensmittelchemie (LC1), Technische Universität Dresden (Autor:in)
  • Juergen Lassak - , Ludwig-Maximilians-Universität München (LMU) (Autor:in)

Abstract

Thermally processed food is an important part of the human diet. Heat-treatment, however, promotes the formation of so-called Amadori rearrangement products, such as fructoselysine. The gut microbiota including Escherichia coli can utilize these compounds as a nutrient source. While the degradation route for fructoselysine is well described, regulation of the corresponding pathway genes frlABCD remained poorly understood. Here, we used bioinformatics combined with molecular and biochemical analyses and show that fructoselysine metabolism in E. coli is tightly controlled at the transcriptional level. The global regulator CRP (CAP) as well as the alternative sigma factor σ32 (RpoH) contribute to promoter activation at high cAMP-levels and inside warm-blooded hosts, respectively. In addition, we identified and characterized a transcriptional regulator FrlR, encoded adjacent to frlABCD, as fructoselysine-6-phosphate specific repressor. Our study provides profound evidence that the interplay of global and substrate-specific regulation is a perfect adaptation strategy to efficiently utilize unusual substrates within the human gut environment.

Details

OriginalspracheEnglisch
Seiten (von - bis)175-190
Seitenumfang16
FachzeitschriftMolecular microbiology
Jahrgang115
Ausgabenummer2
PublikationsstatusVeröffentlicht - Feb. 2021
Peer-Review-StatusJa

Externe IDs

Scopus 85092526066
ORCID /0000-0001-8528-6893/work/142256494
unpaywall 10.1111/mmi.14608
Mendeley 3f983ea6-46e5-300e-a812-50865a4638b0

Schlagworte

Schlagwörter

  • 1-(epsilon-N-lysyl)-1-deoxy-D-fructose, Amadori rearrangement product, BACKBONE DYNAMICS, BINDING, DEGRADATION, EXPRESSION, GLYCATED AMINO-ACIDS, GntR transcriptional regulator, IDENTIFICATION, NMR-SPECTROSCOPY, PHOSPHOENOLPYRUVATE, PROTEIN, SUGAR PHOSPHOTRANSFERASE SYSTEM, fructosyllysine, glycation