SrTiO3 on piezoelectric PMN-PT(001) for application of variable strain

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • O. Bilani-Zeneli - , Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • A. D. Rata - , Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • A. Herklotz - , Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • O. Mieth - , Technische Universität Dresden (Autor:in)
  • L. M. Eng - , Professur für Experimentalphysik/Photophysik (Autor:in)
  • L. Schultz - , Professur für Metallische Werkstoffe und Metallphysik (gB/IFW), Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)
  • M. D. Biegalski - , Oak Ridge National Laboratory (Autor:in)
  • H. M. Christen - , Oak Ridge National Laboratory (Autor:in)
  • K. Dörr - , Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)

Abstract

SrTiO3 (STO) is the most frequently used substrate material for complex oxide films. In this work, STO is explored as a buffer layer on piezoelectric pseudocubic Pb (Mg1/3Nb2/3) 0.72Ti0.28O3 (001) (PMN-PT) substrates, which serve to reversibly strain thin films. The STO buffer layer reduces the in-plane lattice parameter and allows for a better lattice matching to a broader range of thin film materials. STO films (30 nm) have been grown with epitaxial orientation on PMN-PT with an in-plane lattice parameter close to that of bulk STO. The substrate's rhombohedral domain structure has been imaged by atomic force microscopy. The related ferroelectric domain structure has been investigated by piezoresponse force microscopy. Within a domain, STO grows with a rather low roughness (rms<0.2 nm). The transfer of the piezoelectric substrate strain to the STO film and its variation with an applied electric field are studied using x-ray diffraction. The strain dependence of the electrical resistance is measured for a ferromagnetic manganite film grown on top of the STO. Both experiments confirm qualitatively that the STO buffer transfers the substrate strain into a functional film deposited on top.

Details

OriginalspracheEnglisch
Aufsatznummer054108
FachzeitschriftJournal of applied physics
Jahrgang104
Ausgabenummer5
PublikationsstatusVeröffentlicht - 2008
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0002-2484-4158/work/175744105

Schlagworte

ASJC Scopus Sachgebiete