Interpretable Spatiotemporal Feature Selection for Solar Power Forecasts
Aktivität: Vortrag oder Präsentation an externen Einrichtungen/Veranstaltungen › Vortrag › Beigetragen
Personen und Einrichtungen
- Markus Leyser - , Boysen-TUD-Graduiertenkolleg, Professur für Big Data Analytics in Transportation (TT) (Redner:in)
- Pascal Kerschke - , Professur für Big Data Analytics in Transportation (TT) (Beteiligte Person)
- Lennart Schäpermeier - , Professur für Big Data Analytics in Transportation (TT) (Beteiligte Person)
Datum
22 Mai 2024
Beschreibung
Feature selection methods that exploit spatiotemporal data structures are rare. Spatiotemporal feature importance measures are even rarer. We propose a set of feature importance scores that give insights into the spatial, temporal and variable dimensions of spatiotemporal datasets. To this end, we systematically aggregate feature importance scores of reduced models that were trained on dices of the spatiotemporal hypercube. The scores can be calculated from regression coefficients, or from any other upstream feature importance metric. In an extensive case study, we apply the developed methods to a challenging solar power forecasting task, demonstrating their effectiveness in a field closely related to energy meteorology, which is widely recognized as highly complex.Workshop
Titel | COSEAL Workshop 2024 |
---|---|
Kurztitel | COSEAL 2024 |
Dauer | 21 - 23 Mai 2024 |
Webseite | |
Bekanntheitsgrad | Internationale Veranstaltung |
Ort | Dorint Hotel Dresden |
Stadt | Dresden |
Land | Deutschland |