Why is the Winner the Best?
Research output: Contribution to book/Conference proceedings/Anthology/Report › Conference contribution › Contributed › peer-review
Contributors
- University of Leeds
- University of Applied Sciences and Arts of Western Switzerland
- University of Lausanne
- Technische Hochschule Ingolstadt
- University of Pennsylvania
- University of Washington
- University College London
- Autonomous University of Barcelona
- Polytechnic University of Milan
- IT University of Copenhagen
- Erasmus University Rotterdam
- University of Copenhagen
- Harvard University
- King's College London (KCL)
- University of Duisburg-Essen
- University of Nebraska Medical Center
- Arab Academy for Science, Technology and Maritime Transport
- CIBM Center for Biomedical Imaging
- Swiss Federal Institute of Technology Lausanne (EPFL)
- Indraprastha Institute of Information Technology Delhi
- University of Lübeck
- The University of Tokyo
- University of Minnesota System
- Radboud University Nijmegen
- Université de Rennes 1
- Brno University of Technology
- Masaryk University
- University of Zurich
- University of Toronto
- University of Barcelona
- University of Oxford
- University of Strasbourg
- Institute of Image-Guided Surgery
- Technical University of Munich
- Heidelberg University
- TUD Dresden University of Technology
Abstract
International benchmarking competitions have become fundamental for the comparative performance assessment of image analysis methods. However, little attention has been given to investigating what can be learnt from these competitions. Do they really generate scientific progress? What are common and successful participation strategies? What makes a solution superior to a competing method? To address this gap in the literature, we performed a multicenter study with all 80 competitions that were conducted in the scope of IEEE ISBI 2021 and MICCAI 2021. Statistical analyses performed based on comprehensive descriptions of the submitted algorithms linked to their rank as well as the underlying participation strategies revealed common characteristics of winning solutions. These typically include the use of multi-task learning (63%) and/or multi-stage pipelines (61%), and a focus on augmentation (100%), image preprocessing (97%), data curation (79%), and post-processing (66%). The 'typical' lead of a winning team is a computer scientist with a doctoral degree, five years of experience in biomedical image analysis, and four years of experience in deep learning. Two core general development strategies stood out for highly-ranked teams: the reflection of the metrics in the method design and the focus on analyzing and handling failure cases. According to the organizers, 43% of the winning algorithms exceeded the state of the art but only 11% completely solved the respective domain problem. The insights of our study could help researchers (1) improve algorithm development strategies when approaching new problems, and (2) focus on open research questions revealed by this work.
Details
| Original language | English |
|---|---|
| Title of host publication | Proceedings - 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023 |
| Publisher | IEEE Computer Society |
| Pages | 19955-19966 |
| Number of pages | 12 |
| ISBN (electronic) | 9798350301298 |
| Publication status | Published - 2023 |
| Peer-reviewed | Yes |
Publication series
| Series | Conference on Computer Vision and Pattern Recognition (CVPR) |
|---|---|
| Volume | 2023-June |
| ISSN | 1063-6919 |
Conference
| Title | 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition |
|---|---|
| Abbreviated title | CVPR 2023 |
| Duration | 18 - 22 June 2023 |
| Website | |
| Degree of recognition | International event |
| Location | Vancouver Convention Center |
| City | Vancouver |
| Country | Canada |
External IDs
| ORCID | /0000-0002-4590-1908/work/163294011 |
|---|
Keywords
ASJC Scopus subject areas
Keywords
- cell microscopy, Medical and biological vision