Why is the Winner the Best?

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

  • Deutsches Krebsforschungszentrum (DKFZ)
  • University of Leeds
  • Haute Ecole Spécialisée de Suisse occidentale
  • Université de Lausanne
  • Technische Hochschule Ingolstadt
  • University of Pennsylvania
  • University of Washington
  • University College London
  • Autonomous University of Barcelona
  • Italian Institute of Technology
  • Polytechnic University of Milan
  • IT University of Copenhagen
  • Erasmus University Rotterdam
  • Universität Kopenhagen
  • Harvard University
  • King's College London (KCL)
  • Universität Duisburg-Essen
  • University of Nebraska Medical Center
  • Arab Academy for Science, Technology and Maritime Transport
  • CIBM Center for Biomedical Imaging
  • École Polytechnique Fédérale de Lausanne
  • Indraprastha Institute of Information Technology Delhi
  • Universität zu Lübeck
  • The University of Tokyo
  • University of Minnesota System
  • Radboud University Nijmegen
  • Fraunhofer-Institut für Digitale Medizin MEVIS
  • Université de Rennes 1
  • Brno University of Technology
  • Masaryk University
  • Universität Zürich
  • University of Toronto
  • Universitat de Barcelona
  • University of Oxford
  • Université de Strasbourg
  • Institute of Image-Guided Surgery
  • Technische Universität München
  • Universität Heidelberg
  • Technische Universität Dresden

Abstract

International benchmarking competitions have become fundamental for the comparative performance assessment of image analysis methods. However, little attention has been given to investigating what can be learnt from these competitions. Do they really generate scientific progress? What are common and successful participation strategies? What makes a solution superior to a competing method? To address this gap in the literature, we performed a multicenter study with all 80 competitions that were conducted in the scope of IEEE ISBI 2021 and MICCAI 2021. Statistical analyses performed based on comprehensive descriptions of the submitted algorithms linked to their rank as well as the underlying participation strategies revealed common characteristics of winning solutions. These typically include the use of multi-task learning (63%) and/or multi-stage pipelines (61%), and a focus on augmentation (100%), image preprocessing (97%), data curation (79%), and post-processing (66%). The 'typical' lead of a winning team is a computer scientist with a doctoral degree, five years of experience in biomedical image analysis, and four years of experience in deep learning. Two core general development strategies stood out for highly-ranked teams: the reflection of the metrics in the method design and the focus on analyzing and handling failure cases. According to the organizers, 43% of the winning algorithms exceeded the state of the art but only 11% completely solved the respective domain problem. The insights of our study could help researchers (1) improve algorithm development strategies when approaching new problems, and (2) focus on open research questions revealed by this work.

Details

OriginalspracheEnglisch
TitelProceedings - 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023
Herausgeber (Verlag)IEEE Computer Society
Seiten19955-19966
Seitenumfang12
ISBN (elektronisch)9798350301298
PublikationsstatusVeröffentlicht - 2023
Peer-Review-StatusJa

Publikationsreihe

ReiheConference on Computer Vision and Pattern Recognition (CVPR)
Band2023-June
ISSN1063-6919

Konferenz

Titel2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition
KurztitelCVPR 2023
Dauer18 - 22 Juni 2023
Webseite
BekanntheitsgradInternationale Veranstaltung
OrtVancouver Convention Center
StadtVancouver
LandKanada

Externe IDs

ORCID /0000-0002-4590-1908/work/163294011

Schlagworte

Schlagwörter

  • cell microscopy, Medical and biological vision