Three-dimensional (3D) conductive network of CNT-modified short jute fiber-reinforced natural rubber: Hierarchical CNT-enabled thermoelectric and electrically conductive composite interfaces
Research output: Contribution to journal › Research article › Contributed › peer-review
Contributors
Abstract
Jute fibers (JFs) coated with multiwall carbon nanotubes (MWCNTs) have been introduced in a natural rubber (NR) matrix creating a three-dimensional (3D) electrically conductive percolated network. The JF-CNT endowed electrical conductivity and thermoelectric properties to the final composites. CNT networks fully covered the fiber surfaces as shown by the corresponding scanning electron microscopy (SEM) analysis. NR/JF-CNT composites, at 10, 20 and 30 phr (parts per hundred gram of rubber) have been manufactured using a two-roll mixing process. The highest value of electrical conductivity (σ) was 81 S/m for the 30 phr composite. Thermoelectric measurements revealed slight differences in the Seebeck coefficient (S), while the highest power factor (PF) was 1.80 x 10-2 μW/m K-2 for the 30 phr loading. The micromechanical properties and electrical response of the composite's conductive interface have been studied in peak force tapping quantitative nanomechanical (PFT QNM) and conductive atomic force microscopy (c-AFM) mode. The JF-CNT create an electrically percolated network at all fiber loadings endowing electrical and thermoelectric properties to the NR matrix, considered thus as promising thermoelectric stretchable materials.
Details
Original language | English |
---|---|
Article number | 2668 |
Journal | Materials |
Volume | 13 |
Issue number | 11 |
Publication status | Published - 11 Jun 2020 |
Peer-reviewed | Yes |
Keywords
Research priority areas of TU Dresden
DFG Classification of Subject Areas according to Review Boards
Subject groups, research areas, subject areas according to Destatis
ASJC Scopus subject areas
Keywords
- Conductive polymer composites (CPCs), Hierarchical reinforcements, Nanostructured interfaces, Thermoelectric composites, Thermoelectric elastomers, Three-dimensional (3D) conductive network