The Complexity of Resilience Problems via Valued Constraint Satisfaction Problems
Research output: Preprint/documentation/report › Preprint
Contributors
Abstract
Valued constraint satisfaction problems (VCSPs) are a large class of computational optimisation problems. If the variables of a VCSP take values from a finite domain, then recent results in constraint satisfaction imply that the problem is in P or NP-complete, depending on the set of admitted cost functions. Here we study the larger class of cost functions over countably infinite domains that have an oligomorphic automorphism group. We present a hardness condition based on a generalisation of pp-constructability as known for (classical) CSPs. We also provide a universal-algebraic polynomial-time tractability condition, based on the concept of fractional polymorphisms. We apply our general theory to study the computational complexity of resilience problems in database theory (under bag semantics). We show how to construct, for every fixed conjunctive query (and more generally for every union of conjunctive queries), a set of cost functions with an oligomorphic automorphism group such that the resulting VCSP is polynomial-time equivalent to the resilience problem; we only require that the query is connected and show that this assumption can be made without loss of generality. For the case where the query is acylic, we obtain a complexity dichotomy of the resilience problem, based on the dichotomy for finite-domain VCSPs. To illustrate the utility of our methods, we exemplarily settle the complexity of a (non-acyclic) conjunctive query whose computational complexity remained open in the literature by verifying that it satisfies our tractability condition. We conjecture that for resilience problems, our hardness and tractability conditions match, which would establish a complexity dichotomy for resilience problems for (unions of) conjunctive queries.
Details
Original language | English |
---|---|
Publication status | Published - 27 Sept 2023 |
No renderer: customAssociatesEventsRenderPortal,dk.atira.pure.api.shared.model.researchoutput.WorkingPaper
External IDs
ORCID | /0000-0001-8228-3611/work/148606028 |
---|---|
dblp | journals/corr/abs-2309-15654 |
Keywords
Keywords
- math.LO, cs.CC, cs.DB, 68Q25, 08A70, 68P15, F.4.1; F.2.2; H.2.0