T2GS: Comprehensive Reconstruction of Dynamic Surgical Scenes with Gaussian Splatting
Research output: Contribution to book/Conference proceedings/Anthology/Report › Conference contribution › Contributed › peer-review
Contributors
Abstract
Surgical scene reconstruction from endoscopic video is crucial for many applications in computer- and robot-assisted surgery. However, existing methods primarily focus on soft tissue deformation while often neglecting the dynamic motion of surgical tools, limiting the completeness of the reconstructed scene. To bridge the aforementioned research gap, we propose T2GS, a novel and efficient surgical scene reconstruction framework that enables efficient spatio-temporal modelling of both deformable tissues and dynamically interacting surgical tools. T2GS leverages Gaussian Splatting for dynamic scene reconstruction, and it integrates a recent tissue deformation modelling technique while most importantly, introduces a novel efficient tool motion model (ETMM). At its core, ETMM disambiguates the modelling process of tool’s motion as global trajectory modelling and local shape-change modelling. We additionally propose pose-informed pointcloud fusion (PIPF), holistically initialized of tools’ gaussians for improved tool motion reconstruction. Extensive experiments on public datasets demonstrate T2GS’s superior performance for comprehensive endoscopic scene reconstruction compared to previous methods. Moreover, as we specifically design our method with efficiency in concern, T2GS also showcases promising reconstruction efficiency (3mins) and rendering speed (71fps), highlighting its potential for intraoperative applications. Our code is available at https://gitlab.com/nct_tso_public/ttgs.
Details
| Original language | English |
|---|---|
| Title of host publication | Medical Image Computing and Computer Assisted Intervention, MICCAI 2025 |
| Editors | James C. Gee, Jaesung Hong, Carole H. Sudre, Polina Golland, Jinah Park, Daniel C. Alexander, Juan Eugenio Iglesias, Archana Venkataraman, Jong Hyo Kim |
| Publisher | Springer Science and Business Media B.V. |
| Pages | 595-605 |
| Number of pages | 11 |
| ISBN (electronic) | 978-3-032-05114-1 |
| ISBN (print) | 978-3-032-05113-4 |
| Publication status | Published - 2026 |
| Peer-reviewed | Yes |
Publication series
| Series | Lecture notes in computer science |
|---|---|
| Volume | 15968 LNCS |
| ISSN | 0302-9743 |
Conference
| Title | 28th International Conference on Medical Image Computing and Computer Assisted Intervention |
|---|---|
| Abbreviated title | MICCAI 2025 |
| Conference number | 28 |
| Duration | 23 - 27 September 2025 |
| Website | |
| Location | Daejeon Convention Center |
| City | Daejeon |
| Country | Korea, Republic of |
External IDs
| ORCID | /0000-0002-4590-1908/work/199962972 |
|---|
Keywords
ASJC Scopus subject areas
Keywords
- Dynamic scenes, Gaussian splatting, Scene reconstruction