T2GS: Comprehensive Reconstruction of Dynamic Surgical Scenes with Gaussian Splatting

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

Surgical scene reconstruction from endoscopic video is crucial for many applications in computer- and robot-assisted surgery. However, existing methods primarily focus on soft tissue deformation while often neglecting the dynamic motion of surgical tools, limiting the completeness of the reconstructed scene. To bridge the aforementioned research gap, we propose T2GS, a novel and efficient surgical scene reconstruction framework that enables efficient spatio-temporal modelling of both deformable tissues and dynamically interacting surgical tools. T2GS leverages Gaussian Splatting for dynamic scene reconstruction, and it integrates a recent tissue deformation modelling technique while most importantly, introduces a novel efficient tool motion model (ETMM). At its core, ETMM disambiguates the modelling process of tool’s motion as global trajectory modelling and local shape-change modelling. We additionally propose pose-informed pointcloud fusion (PIPF), holistically initialized of tools’ gaussians for improved tool motion reconstruction. Extensive experiments on public datasets demonstrate T2GS’s superior performance for comprehensive endoscopic scene reconstruction compared to previous methods. Moreover, as we specifically design our method with efficiency in concern, T2GS also showcases promising reconstruction efficiency (3mins) and rendering speed (71fps), highlighting its potential for intraoperative applications. Our code is available at https://gitlab.com/nct_tso_public/ttgs.

Details

OriginalspracheEnglisch
TitelMedical Image Computing and Computer Assisted Intervention, MICCAI 2025
Redakteure/-innenJames C. Gee, Jaesung Hong, Carole H. Sudre, Polina Golland, Jinah Park, Daniel C. Alexander, Juan Eugenio Iglesias, Archana Venkataraman, Jong Hyo Kim
Herausgeber (Verlag)Springer Science and Business Media B.V.
Seiten595-605
Seitenumfang11
ISBN (elektronisch)978-3-032-05114-1
ISBN (Print)978-3-032-05113-4
PublikationsstatusVeröffentlicht - 2026
Peer-Review-StatusJa

Publikationsreihe

ReiheLecture notes in computer science
Band15968 LNCS
ISSN0302-9743

Konferenz

Titel28th International Conference on Medical Image Computing and Computer Assisted Intervention
KurztitelMICCAI 2025
Veranstaltungsnummer28
Dauer23 - 27 September 2025
Webseite
OrtDaejeon Convention Center
StadtDaejeon
LandSüdkorea

Externe IDs

ORCID /0000-0002-4590-1908/work/199962972

Schlagworte

Schlagwörter

  • Dynamic scenes, Gaussian splatting, Scene reconstruction