Superconvergence using pointwise interpolation in convection-diffusion problems

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

  • TUD Dresden University of Technology

Abstract

Considering a singularly perturbed convection-diffusion problem, we present an analysis for a superconvergence result using pointwise interpolation of Gauss-Lobatto type for higher-order streamline diffusion FEM. We show a useful connection between two different types of interpolation, namely a vertex-edge-cell interpolant and a pointwise interpolant. Moreover, different postprocessing operators are analysed and applied to model problems. (C) 2013 IMACS. Published by Elsevier B.V. All rights reserved.

Details

Original languageEnglish
Pages (from-to)132-144
Number of pages13
JournalApplied numerical mathematics
Volume76
Publication statusPublished - Feb 2014
Peer-reviewedYes

External IDs

Scopus 84888857921
ORCID /0000-0002-2458-1597/work/142239711

Keywords

Keywords

  • Singular perturbation, Layer-adapted meshes, Superconvergence, Postprocessing, CORNER SINGULARITIES, BOUNDARY-LAYERS, CONVERGENCE