Superconvergence using pointwise interpolation in convection-diffusion problems
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
- Technische Universität Dresden
Abstract
Considering a singularly perturbed convection-diffusion problem, we present an analysis for a superconvergence result using pointwise interpolation of Gauss-Lobatto type for higher-order streamline diffusion FEM. We show a useful connection between two different types of interpolation, namely a vertex-edge-cell interpolant and a pointwise interpolant. Moreover, different postprocessing operators are analysed and applied to model problems. (C) 2013 IMACS. Published by Elsevier B.V. All rights reserved.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 132-144 |
Seitenumfang | 13 |
Fachzeitschrift | Applied numerical mathematics |
Jahrgang | 76 |
Publikationsstatus | Veröffentlicht - Feb. 2014 |
Peer-Review-Status | Ja |
Externe IDs
Scopus | 84888857921 |
---|---|
ORCID | /0000-0002-2458-1597/work/142239711 |
Schlagworte
Schlagwörter
- Singular perturbation, Layer-adapted meshes, Superconvergence, Postprocessing, CORNER SINGULARITIES, BOUNDARY-LAYERS, CONVERGENCE