Smart Design of Fermi Level Pinning in HfO2-Based Ferroelectric Memories

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

  • Lutz Baumgarten - , Jülich Research Centre (Author)
  • Thomas Szyjka - , Jülich Research Centre, University of Konstanz (Author)
  • Terence Mittmann - , NaMLab - Nanoelectronic materials laboratory gGmbH (Author)
  • Andrei Gloskovskii - , German Electron Synchrotron (DESY) (Author)
  • Christoph Schlueter - , German Electron Synchrotron (DESY) (Author)
  • Thomas Mikolajick - , Chair of Nanoelectronics, NaMLab - Nanoelectronic materials laboratory gGmbH (Author)
  • Uwe Schroeder - , NaMLab - Nanoelectronic materials laboratory gGmbH (Author)
  • Martina Müller - , University of Konstanz (Author)

Abstract

How and why the reliability of ferroelectric HfO2- and HZO (Hf0.5Zr0.5O2)-based memory devices strongly depends on the choice of electrode materials is currently under intense discussion. Interface conditions such as band alignment, defect formation, and doping are recognized as decisive and interrelated parameters, but a unified picture of the physical mechanisms is still missing. Here, two opposite scenarios of band alignment are found in TiN/HZO/TiN and IrO2/HZO/IrO2 using hard X-ray photoelectron spectroscopy, revealing on the one hand the conditions for a stable device performance, and the origin of their degradation on the other. As a key difference, TiN electrodes scavenge oxygen from the HZO, while IrO2 electrodes supply it. Considering the electronic doping limit of HfO2, a key condition for the stability of ferroelectric devices can be identified: The alignment of the charge neutrality levelwith respect to the metallic Fermi level, which is pinned by the doping limit. Stable device performance can only be achieved for oxygen-deficient HfO2-based interfaces, where the Fermi level of the metal electrode is close to the conduction band of the ferroelectric insulator. This empirical model explains the fatigue behavior of HfO2-based capacitors using either oxygen-scavenging TiN or oxygen-supplying IrO2 electrodes.

Details

Original languageEnglish
Article number2307120
Number of pages16
JournalAdvanced functional materials
Volume34
Issue number3
Early online date8 Oct 2023
Publication statusPublished - 15 Jan 2024
Peer-reviewedYes

External IDs

Mendeley f9baf0b9-68bb-37e8-a19a-e3fd5015b6e6
WOS 001082575700001
ORCID /0000-0003-3814-0378/work/146646233

Keywords

Keywords

  • band alignment, fatigue, ferroelectrics, hard X-ray photoelectron spectroscopy, HfO, interstitials, vacancies, HfO2, Vacancies, Interstitials, Fatigue, Band alignment, Ferroelectrics