Sleep Well: Pragmatic Analysis of the Idle States of Intel Processors
Research output: Contribution to book/conference proceedings/anthology/report › Conference contribution › Contributed › peer-review
Contributors
Abstract
Rising energy consumption is of growing concern for cloud data center providers. Modern processors try to counteract this problem through low-power idle states that save energy in phases with little demand for compute resources. Making proper use of this feature, however, requires knowledge about the properties of these states for the very processors used in a specific setup; most importantly, the energy consumed in each idle state and the latency for resuming normal operation. Unfortunately, hardware vendors usually do not
provide this critical information.
In this paper, we propose a scheme for automatically analyzing the idle states of modern Intel processors. Our open-source implementation uses an extensible Linux kernel module to measure the energy and latency implications of a system’s processor without any manual intervention or external equipment. We demonstrate the practical applicability of our approach by analyzing two Intel processors from the Haswell and Skylake generation — an Intel Core i7-4790 and an Intel Core i7-6700K, respectively. The results show that our implementation yields reliable, precise, and reproducible measurements for the energy and latency implications of each processor’s various idle states.
provide this critical information.
In this paper, we propose a scheme for automatically analyzing the idle states of modern Intel processors. Our open-source implementation uses an extensible Linux kernel module to measure the energy and latency implications of a system’s processor without any manual intervention or external equipment. We demonstrate the practical applicability of our approach by analyzing two Intel processors from the Haswell and Skylake generation — an Intel Core i7-4790 and an Intel Core i7-6700K, respectively. The results show that our implementation yields reliable, precise, and reproducible measurements for the energy and latency implications of each processor’s various idle states.
Details
Original language | English |
---|---|
Title of host publication | Proceedings of the IEEE/ACM 10th International Conference on Big Data Computing, Applications and Technologies (BDCAT) |
Publisher | Association for Computing Machinery (ACM), New York |
Pages | 04:1-04:10 |
Number of pages | 10 |
ISBN (electronic) | 9798400704734 |
Publication status | Published - 3 Apr 2024 |
Peer-reviewed | Yes |
External IDs
ORCID | /0000-0002-1427-9343/work/157319395 |
---|---|
dblp | conf/bdc/SmejkalBOSH23 |
Scopus | 85192159099 |
Mendeley | 1d6a4af8-8d6c-3ea5-865e-4130bb770604 |
Keywords
Sustainable Development Goals
ASJC Scopus subject areas
Keywords
- HPET, Haswell, RAPL, Skylake, energy, idle states, intel processor, measurement, wake-up latency