
Sleep Well: Pragmatic Analysis of the
Idle States of Intel Processors

Till Smejkal
∗

till.smejkal@tu-dresden.de

TU Dresden

Germany

Jan Bierbaum
∗

jan.bierbaum@tu-dresden.de

TU Dresden

Germany

Thomas Oberhauser
∗

thomas.oberhauser@tu-dresden.de

TU Dresden

Germany

Horst Schirmeier

horst.schirmeier@tu-dresden.de

TU Dresden

Germany

Hermann Härtig

hermann.haertig@tu-dresden.de

TU Dresden

Germany

ABSTRACT
Rising energy consumption is of growing concern for cloud data

center providers. Modern processors try to counteract this problem

through low-power idle states that save energy in phases with little

demand for compute resources. Making proper use of this feature,

however, requires knowledge about the properties of these states

for the very processors used in a specific setup; most importantly,

the energy consumed in each idle state and the latency for resuming

normal operation. Unfortunately, hardware vendors usually do not

provide this critical information.

In this paper, we propose a scheme for automatically analyzing

the idle states of modern Intel processors. Our open-source imple-

mentation uses an extensible Linux kernel module to measure the

energy and latency implications of a system’s processor without

any manual intervention or external equipment. We demonstrate

the practical applicability of our approach by analyzing two Intel

processors from the Haswell and Skylake generation— an Intel

Core i7-4790 and an Intel Core i7-6700K, respectively. The results

show that our implementation yields reliable, precise, and repro-

ducible measurements for the energy and latency implications of

each processor’s various idle states.

CCS CONCEPTS
• Hardware→ Chip-level power issues; • Software and its engi-
neering → Software libraries and repositories; • Applied comput-
ing → Data centers.

KEYWORDS
energy, measurement, idle states, wake-up latency, Intel processor,

Haswell, Skylake, RAPL, HPET

∗
Equal contribution from the authors. Order randomized.

BDCAT ’23, December 4–7, 2023, Taormina (Messina), Italy
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

This is the author’s version of the work. It is posted here for your personal use. Not

for redistribution. The definitive Version of Record was published in IEEE/ACM 8th
International Conference on Big Data Computing, Applications and Technologies (BDCAT
’23), December 4–7, 2023, Taormina (Messina), Italy, https://doi.org/10.1145/3632366.
3632385.

ACM Reference Format:
Till Smejkal, Jan Bierbaum, Thomas Oberhauser, Horst Schirmeier, and Her-

mann Härtig. 2023. Sleep Well: Pragmatic Analysis of the Idle States of

Intel Processors. In IEEE/ACM 8th International Conference on Big Data
Computing, Applications and Technologies (BDCAT ’23), December 4–7, 2023,
Taormina (Messina), Italy. ACM, New York, NY, USA, 11 pages. https://doi.

org/10.1145/3632366.3632385

1 INTRODUCTION
Cloud data centers have seen remarkable growth in recent years,

propelled by the surging demand for ubiquitous computing and

storage capacity. With rising energy prices and increasing envi-

ronmental concerns, the energy consumption of these facilities

becomes a dominant aspect of their design and operation. Energy

consumption accounts for up to 10 % to 15 % of a data center’s total

cost of ownership [2, 10, 18]. Every Joule of energy the computing

hardware consumes requires matching cooling infrastructure for

dissipating the resulting waste heat, further increasing the con-

sumption. Koot and Wijnhoven “predict a combined growth of data

center electricity needs of 286 TWh in 2016 until about 321 TWh in

2030, if all currently known growth factors remain the same” [19].

In typical cloud data centers, over-provisioning of resources,

especially processors, is common: Operators strive to guarantee

service level agreements (SLAs) [11], whereas for customers, mis-

configurations can lead to over-provisioning [3]. In both cases, this

practice leads to underutilization. Specialized low-power hardware

states, known as idle states, reduce power consumption in this situa-

tion.We concentrate on x86 processors. These processors are widely

employed in cloud environments and offer multiple idle states, each

with different power consumption and wake-up latency character-

istics. Selecting the most suitable idle state promises compelling

energy savings during idle periods. However, high idle states
1
in

processors can introduce high wake-up latencies, potentially im-

pacting system performance and violating SLAs. As an example,

our analysis of a Skylake Intel Core i7-6700K processor shows that

in its highest idle state, the processor consumes as little as 2.7%

of the power its normal operation mode requires. On the down-

side, the processor will take ≈340 µs to resume normal execution

once it entered this high idle state. To complicate matters further,

shared resources, like caches, make the idle states of different cores

interdependent.

1
Sometimes also called deep sleep states.

https://doi.org/10.1145/3632366.3632385
https://doi.org/10.1145/3632366.3632385
https://doi.org/10.1145/3632366.3632385
https://doi.org/10.1145/3632366.3632385


BDCAT ’23, December 4–7, 2023, Taormina (Messina), Italy Till Smejkal, Jan Bierbaum, Thomas Oberhauser, Horst Schirmeier, and Hermann Härtig

Selecting the most suitable idle state for a particular core is, thus,

a complex decision that trades wake-up latency off against energy

savings and requires a global view of the system. Cloud systems

typically rely on sophisticated algorithms known as idle governors
for this purpose. These algorithms require precise information

for their decision-making, whereas official documentation offers

only information on the effects of idle states: The Intel manual,

for example, provides coarse descriptions of the measures taken

for each idle state yet lacks any concrete information regarding

wake-up latency or energy consumption. Without this crucial data,

idle governors are bound to select sub-optimal idle states, leading

to inefficiencies in overall energy usage [12].

This paper introduces our novel approach to analyzing the en-

ergy and latency characteristics of idle states in modern Intel pro-

cessors. We implement an open-source measurement framework

as a Linux kernel module that takes full control of the system’s

processor and thereby excludes any disturbance by other software,

including the kernel. Once in control, our framework traverses the

processor’s idle states and measures each state’s effect on energy

consumption (“How much power will I save when transitioning

the processors to this idle state?”) and wake-up latency (“When the

processor resides in this idle state, how long will it take to start

executing instructions again?”).

Due to the well-controlled environment, the measurement re-

sults are stable, andwe require only few repetitions, which results in

fast measurements (<20 seconds). Employing RAPL and processor-

internal timers for its measurements, our implementation is fully

self-contained and can run autonomously. All in all, our implemen-

tation enables precise measurements of the equipped processor,

thereby allowing the kernel’s idle governor to make better deci-

sions. These measurements run, for example, during the installation

procedure of the operating system and, thus, incur no overhead in

the running system.

To our knowledge, this approach is the first that (1) acquires as

precise measurements as possible by tightly controlling the sys-

tem, (2) requires only short measurement intervals, (3) is agnostic

towards the underlying microarchitecture, and (4) performs all

measurements without manual intervention or additional metering

hardware. These properties are essential for our long-term goal of

integrating the framework into the setup procedure of the operat-

ing system to provide the idle governor with a solid foundation for

its decisions. Providing precise idle state characteristics can help to

improve the system performance and energy consumption without

any support and changes outside of the operating system kernel.

As a concrete demonstration, we measured two Intel processors

from the Haswell and Skylake generation— an Intel Core i7-4790

and Core i7-6700K, respectively—which are still widely deployed

in data centers. Our results show that, for the highest supported

idle state, the Skylake offers energy saving potential superior to

the Haswell (Skylake: 97.3 %; Haswell: 90.1 %) but also incur signif-

icantly longer wake-up latencies (Skylake: 340 µs; Haswell: 56 µs).

The remainder of the paper is structured as follows: Section 2

introduces the technical background of modern processors, includ-

ing idle states and how to use them. In Section 3, we present our

measurement infrastructure, followed by results for two different

State Effects

C0 Active

C1 Auto halt

C1E Auto halt with lowest DVFS setting

C3 L1 & L2 cache flushed; Core clock gated

C6 Core power gated

C7 C6 + all cores in C7→ LLC flushed & power gated

C8 C7 + LLC flushed & power gated

Table 1: Idle states and their implementations as described in
the vendor documentation for Haswell [15] and Skylake [14]
Intel processors.

Intel architectures in Section 4. Section 5 discusses related work. Fi-

nally, Section 6 summarizes our work and outlines potential future

extensions.

2 ENERGY-RELATED PROCESSOR FEATURES
Modern x86 processors offer multiple energy-related mechanisms;

in the context of this paper, we concentrate on Dynamic Voltage

and Frequency Scaling (DVFS), low-power operating states (idle

states), and Running Average Power Limit (RAPL).

2.1 DVFS
Higher frequencies allow the processor to execute instructions

faster. On the downside, higher frequencies necessitate higher

supply voltages for stable operation. A processor’s power is ap-

proximately proportional to its frequency 𝑓 and the square of its

voltage 𝑉 [22, Ch. 2]: 𝑃 ≈ 𝐴𝐶𝑓𝑉 2
, where the capacitance 𝐶 is a

design-time constant and the activity 𝐴 can be changed only by

shutting off the clock when the processor idles; see Section 2.2.

Today’s processors allow adjustment of their frequency at runtime

and automatically adapt their voltage accordingly. This feature per-

mits the reduction of frequency (and hence voltage) during periods

of low demand, thereby conserving energy. Linux uses so-called

scaling governors to control this processor feature [24].

2.2 Idle States
When there is no work for the processor, it can enter dedicated low-

power idle states to save energy. The Advanced Configuration and

Power Interface (ACPI) defines a set of power states for hardware.

Processor power states are named C0, C1, . . . , C𝑛 [29, Ch. 8]. ACPI

only mandates support for C0 and C1, but contemporary processors

offer many additional idle states. Note that not all intermediate idle

states necessarily exist. For example, the two Intel processors we

evaluate in Section 4 support idle states up to C7 (Core i7-4790) and

C8 (Core i7-6700K) but “lack” states C2, C4, and C5.

Whereas in C0, the processor is fully operational and actively

executes instructions, higher integers indicate idle states with in-

creasingly aggressive energy saving measures. The concrete actions

taken are vendor- and architecture-specific. They range from just

halting execution in low idle states to completely shutting off the

clock (clock gating) and voltage (power gating) for parts of the pro-
cessor in higher idle states [22, Ch. 2].



Sleep Well: Pragmatic Analysis of the Idle States of Intel Processors BDCAT ’23, December 4–7, 2023, Taormina (Messina), Italy

These energy-saving measures come at a price, though: Transi-

tioning from the active state C0 to an idle state C𝑥 and back requires

effort and time, e.g., for de/repowering circuitry and flushing/repop-

ulating caches. Consequently, increasing values of 𝑥 promise higher

energy savings, but also incur higher entry and exit latencies [17,

Vol. 3, Sec. 15.7]; also see Section 4.2. Processors offer special hard-

ware instructions to transition to idle states. On contemporary Intel

processors, the command pair monitor/mwait serves this purpose

best; more details are in Section 2.3. In the Linux kernel, the idle
governor is responsible for selecting the most suitable idle state for

each core [30].

For years, processors have been featuring multiple cores and of-

ten also multiple hardware threads or sibling cores— Simultaneous

Multi-Threading (SMT) or “Hyperthreading” in Intel terminology
2
.

Internally, processors implement idle states for each individual core

(CC-states) as well as for the processor as a whole (PC-states). Only
the former can be requested explicitly; Section 2.3 will provide

further details. In the case of SMT, a core’s C-state is limited by the

lowest C-state of any of its sibling cores and, similarly, the PC-state

cannot be higher than the lowest CC-state of that processor, i.e.

𝑃𝐶 ≤ min𝑖∈cores𝐶𝐶𝑖 . Other factors can also hinder the processor

from reaching high C-states, and Intel offers no guarantees what-

soever about entering a desired idle state. The two Intel processors

we evaluate in Section 4 support idle states up to C7 (Core i7-4790)

and C8 (Core i7-6700K), respectively. Table 1 shows these idle states

and the energy-saving measures taken in each, according to vendor

documentation.

2.3 monitor/mwait
On state-of-the-art Intel processors, the most flexible way to re-

quest idle states is the monitor/mwait pair of instructions, both of

which are only available in the privileged mode of the processor [17,

Vol. 2, Sec. 4.3]. Figure 1 demonstrates how to use monitor/mwait
for transitioning to idle state C𝑥 : monitor “sets up an address range
for the monitor hardware” 1 , i.e., the instruction specifies a mem-

ory address the processor should monitor for changes. mwait then

requests 2 the processor to pause execution and enter a specific

idle state C𝑥 until (1) the monitored memory location is modified

or (2) an interrupt is triggered 3 .

According to vendor documentation, “[i]mplementation-specific

conditions may result in an interrupt causing the processor to exit

the implementation-dependent-optimized state even if interrupts

are masked [. . . ].” In general, there are no strict guarantees about

which idle state the processor will actually enter or for how long it

will remain there. Our measurements (Section 4) indicate that the

processor, indeed, remains in the requested idle state most of the

time.

2.4 Energy Measurement via RAPL
Whereas the intended purpose of the Running Average Power

Limit (RAPL) is to allow the user to set hardware-enforced power

limits, it also measures the energy consumption of Intel processors.

Special model-specific registers (MSRs) allow software access to

2
We use the term core to refer to all hardware threads of the processor. Cores sharing

the same execution engine, we call sibling cores.

C0

C1

· · ·

C𝑥

monitor <mem> mwait
C
𝑥 IR

Q
or

w
ri
te
to

<m
em

>

1

2 3

Figure 1: Using monitor/mwait to enter idle state C𝑥 .

these measurements, which Hackenberg et al. verified to be highly

accurate for processor generations starting with Haswell [8].

An important constraint of RAPL is its limited temporal and

spatial granularity: Specifically, it cannot measure energy consump-

tion on a per-core basis, only for the processor as a whole, and the

energy counters update at discrete intervals of approximately one

millisecond [17, Vol. 3B, Sec. 15.10.4]. Due to its ubiquitous availabil-

ity, ease of use, and high precision, RAPL has seen wide adoption

nevertheless. The research community has addressed the aforemen-

tioned limitations so that RAPL is suitable for measurements of

VMs [4], individual processes [28], and short code paths [9].

3 METHODOLOGY
Accurately measuring the energy consumption of the individual

idle states of an x86 processor comes with various challenges. This

section describes our measurement approach in detail, points out

the main challenges, and outlines how we overcame them. We

designed our framework to (1) acquire as precise measurements

as possible, (2) be generic in terms of applicability to different

microarchitectures, and (3) require no manual intervention during

the measurement but run fully automated.

Core0

Core1

· · ·

Coren

start

setup

grab & sync cores idle done

finalize

re
po
rt

1

2 3 4

5

Figure 2: The general work flow of the measurement algo-
rithm.

Figure 2 outlines the general structure of our measurement algo-

rithm. After the user initiates a measurement, the algorithm per-

forms some setup steps, such as initializing and activating internal

counters and preparing the system for the measurement 1 . When

this step is complete, the algorithm takes over all available cores in

the system to create a fully controlled environment 2 . Next, the

algorithm synchronizes all cores to ensure that the measurements

begin simultaneously on all of them. The measurement itself is a

controlled idle loop (see Section 3.2) on all cores in parallel 3 . At a

user-specified point in time, the algorithm stops the idle loop, saves

various performance counters, and releases all cores to the system



BDCAT ’23, December 4–7, 2023, Taormina (Messina), Italy Till Smejkal, Jan Bierbaum, Thomas Oberhauser, Horst Schirmeier, and Hermann Härtig

1 void setup(bool leader) {

2 if (leader) {

3 prepare_measurements();

4 activate_perf_counter();

5 run_on_cores(all & ~THIS_CORE, setup, false); 1

6 }

7

8 if (leader)

9 mask_interrupts(all & ~HPET); 2

10 else

11 mask_interrupts(all & ~IPI);

12

13 idle_loop(leader, IDLE_STATE, IDLE_TIME_MS);

14 }

Listing 1: Pseudo-Code of the setup procedure.

again 4 . Finally, the algorithm calculates the corresponding energy

consumption of the measuring step, determines wake-up latencies

for the selected idle state, and makes the collected data available to

the user 5 .

During the design of our measurement framework, we already

envisioned future extensions to other combinations of hardware

and software configurations. Hence, in the following, we will first

explain the general approach of the algorithm, followed by a descrip-

tion of the details we use for our implementation on the evaluated

Intel x86 systems (see Section 4).

3.1 Controlling the Environment
The biggest challenge we needed to overcome for our approach

was that accurate idle measurements require a closely controlled

environment. As described in Section 2.2, a core will enter and

remain in an idle state only if it does not execute any code and no

interrupts or similar events occur. Hence, we decided to implement

our measurement algorithm as an operating-system component.

Running the algorithm within the operating-system kernel pro-

vides the following advantages: (1) No user-space applications will

interfere with the measurement as we control the scheduler. (2) We

have direct access to the hardware, e.g., for managing interrupts

or reading performance counters, and (3) it is possible for the algo-

rithm to use the plain monitor and mwait instructions to enter the

processor’s idle states.

This decision limits our approach to users who possess root

access to the system being measured, but we argue that this is not a

problem in general. Typically, it is not ordinary users who take such

measurements but rather system administrators with the necessary

rights to install or enable additional operating-system components,

such as our idle-state measurement tool.

However, just entering the operating-system kernel will only

give our implementation exclusive control over one core in the

system (in the following called the leader core). In order to ensure

accurate measurements of the energy and latency properties of idle

states, it is imperative to maintain complete control over the entire

system. Hence, we need to perform additional steps as outlined in

Listing 1. We use an interface that allows kernel components to run

arbitrary functions in parallel on all available cores, thus granting

1 void idle_loop(bool leader,

2 int idle_state,

3 int idle_time_ms) {

4 synchronize(); 3

5 if (leader)

6 programm_timer(current_time() + idle_time_ms); 4

7

8 monitor(&dummy); 5

9 mwait(idle_state);

10

11 if (leader)

12 wakeup_followers();

13 }

Listing 2: Pseudo-Code of the idle measurement routine.

us full control over the system 1 . By invoking this interface on the

leader core, it sends an inter-processor interrupt (IPI) to all other

cores (the follower cores), which stops their current execution and

forces them to execute the specified function.

Unrelated events at external components, such as the network

adapter or the keyboard, could interfere with the controlled idling

of cores (see Section 2.3). We avoid this issue by masking all non-

essential interrupts 2 . In order to wake up after the idle period, we

need to allow specific interrupts (see Section 3.2 for more details).

Measurements with Linux. We implemented the outlined ap-

proach in a Linux kernel module. While a module allows for deep

integration into the Linux kernel, users can dynamically add it to or

remove it from an existing kernel at runtime. This feature simplifies

the use of our framework. To gain full control of the system, we uti-

lize the on_each_cpu3 interface of the Linux kernel. This function
provides exactly the aforementioned properties, i.e., it allows us to

run arbitrary code on all cores of the system and, thereby, actively

manage the system during our measurements.

3.2 Controlling the Idle and Wake Up
Once the system is prepared, the actual idle routine outlined in

Listing 2 starts. First, all cores use a barrier to synchronize again

so the idle phase will start perfectly in parallel 3 . Afterward, the

cores execute the monitor/mwait instruction sequence 5 . This

instruction sequence stops execution on each core and requests the

cores to enter the designated idle state (see Section 2.3).

Since entering an idle state with masked interrupts will block

the core forever, we need a way to wake up from the idle phase in

a controlled fashion. The leader core takes care of this by setting a

wake-up call that triggers after a pre-specified period of time 4 .

There are two options to achieve this wake-up: We can either set a

timer and allow the associated interrupts, or we need an external

device (or a processor on another socket) to write to the monitored

memory region. After the leader core wakes, the follower cores

need to leave their idle states as well. Again, we can either write

to the memory region the follower cores monitor or send them an

enabled interrupt.

3
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/include/linux/

smp.h?h=v6.2.9#n69

https://git.kernel.org/pub/scm/linux/kernel/git /stable/linux.git/tree/include/linux/smp.h?h=v6.2.9#n69
https://git.kernel.org/pub/scm/linux/kernel/git /stable/linux.git/tree/include/linux/smp.h?h=v6.2.9#n69


Sleep Well: Pragmatic Analysis of the Idle States of Intel Processors BDCAT ’23, December 4–7, 2023, Taormina (Messina), Italy

Waking Up with HPET and IPIs. In our implementation, we opted

for the high-precision event timer (HPET) to wake the leader core.

This timer offers a frequency of at least 10MHz (100 ns tick period)

and a drift rate of less than ±0.05% over any interval longer than

1ms [16]. Initialized appropriately, the HPET interrupts the leader

core once the idle period is over. This technique allows for very

fine-grained idle periods and is guaranteed to work in every cir-

cumstance. To wake up the follower cores, we use inter-processor

interrupts (IPIs). In both cases, we ensure that the respective inter-

rupts—HPET for the leader core and IPI for the follower cores— are

not masked during setup 2 .

Unfortunately, using the HPET to wake up the leader core cur-

rently requires a few changes to the Linux kernel. By default, Linux

does not grant kernel modules direct access to the HPET. We added

or changed about 50 lines of code in the kernel to allow this fine-

grained control. In the future, we plan to replace the HPET with a

different interrupt source that is, without any kernel modifications,

directly accessible from kernel modules.

3.3 Accurate Measurements
A key goal of our framework is to acquire as precise measurements

of idle states as possible. With the ability to control the environ-

ment in a way that allows all cores to enter and maintain specific

idle states, we have met all necessary prerequisites for precise

measurements. Our framework focuses on measuring the energy

consumption and the wake-up latency of the different idle states

available on the system under test.

C0

C1

· · ·

C𝑛

Energy
Updates

prepare Energy
sync enter

idle

le
av
e

Energy
read

time

Etimer
IRQ

C𝑛 enter
latency

C𝑛 wake-up
latency

1 2

3

Figure 3: Detailed workflow of the energy and wake-up la-
tency measurements of the idle states.

Figure 3 outlines the workflow we follow to gather the data

of interest. For fine-grained measurements, we apply a technique

similar to the one described by Hähnel et al. [9]: We synchronize

with the energy measurement updates before entering the idle

states 1 to always start with an up-to-date energy value. This

approach is especially important for energy measurement systems

with low update rates because, otherwise, short idle times would

lead to significant measurement errors. After synchronizing with

the energy counter update, we save its value as a basis, program the

wake-up timer (see Section 3.2), and finally enter the selected idle

state. After the wake-up, we optionally synchronize again with the

energy measurements 2 . Using these two values, we can precisely

calculate the consumed energy. When properly accounting for the

synchronization phases with the measurement, this approach is

viable even for short idle periods, as Hähnel et al. showed.

To determine the wake-up latency of the processor’s idle states,

we use high-precision time stamps. Since we program the point in

time when the timer triggers the interrupt to wake up the leader

core, we know the exact time the core leaves the idle state. Once the

leader core enters the C0 active state, our framework immediately

takes another time stamp 3 . With this time stamp, we can calculate

the wake-up latency as the difference between the configured time

stamp of the timer and the one measured in the C0-state.

Measurements with RAPL and HPET. Modern Intel processors

come with an energy measurement mechanism on board. In our

implementation, we use the RAPL energy counters. As described

in Section 2.4, these counters are accessible through model-specific

registers (MSRs) of the processor, are very precise, and update

approximately every millisecond. This combination of properties

allows fine-grained energy measurements and makes RAPL perfect

for our measurement algorithm. For sleep times longer than 50 mil-

liseconds, we omit the synchronization with the energy counters af-

ter the idle phase. The additional measurement error introduced by

directly reading the RAPL counters is negligible in these cases [9].

We rely on the HPET for the latency measurement. Immediately

after entering the C0-state on the leader core, we read the current

HPET counter and use this value as a time stamp. By comparing

the read value with the programmed counter value at which the

HPET triggered the interrupt, we can calculate the wake-up latency

of the idle state that the core used during monitor/mwait.

4 RESULTS
To demonstrate the applicability of our measurement infrastructure,

we analyzed various idle-state-related aspects of two Intel proces-

sors from the Haswell [15] and Skylake [14] generations: an Intel

Core i7-4790 and an Intel Core i7-6700K, respectively. Both pro-

cessors feature eight cores, four physical ones with two hardware

threads each. The newer Core i7-6700K supports power states up

to idle state C8, whereas the Core i7-4790 stops at C7s. According

to the internal capability register [16], the HPET tick periods are

≈ 42 ns on the Core i7-6700K and ≈ 70 ns on the Core i7-4790. To

avoid any side effects of DVFS (see Section 2.1) and best show the

energy savings achievable by their idle states, we run the processors

at their maximum regular frequency: 3.60GHz for the Core i7-4790

and 4GHz for the Core i7-6700K. As our work is motivated by pro-

viding an accurate database for the system’s idle governor to make

informed decisions, we restrict our experiments to the processor

power states used by Linux’s idle governor.

We repeat each measurement ten times to identify potential sta-

bility problems of the measured values. The idle phase lasts 100ms

for all experiments. This way, the processor has enough time to pre-

pare and enter the requested power state, yet the measurements are

short enough to reliably analyse a processor in less than 20 seconds.

100ms is also long enough to omit synchronizing with the RAPL

counters after returning to the active state C0 (see Section 3.3).

When using mwait, we can only explicitly request a core’s power

state (refer to Section 2.2). Therefore, we use the term “C-state” or



BDCAT ’23, December 4–7, 2023, Taormina (Messina), Italy Till Smejkal, Jan Bierbaum, Thomas Oberhauser, Horst Schirmeier, and Hermann Härtig

C0 C1 C1E C3 C6 C7s

0

10

20

30

40

50

60
55.96

30.27

9.28
7.52

5.54 5.52

Power State

A
v
e
r
a
g
e
P
o
w
e
r
[
W
]

(a) Haswell Core i7-4790

C0 C1 C1E C3 C6 C7s C8

0

10

20

30

40

50

60

44.53

13.04

1.66 1.58 1.6 1.59 1.18

Power State

A
v
e
r
a
g
e
P
o
w
e
r
[
W
]

(b) Skylake Core i7-6700K

Figure 4: Processor power by requested power state. Individual measurements are depicted as circles with a horizontal jitter to
avoid full overlap of identical values. Numbers next to the data points indicate mean values.

C0 C1 C1E C3 C6 C7s

0

10

20

30

40

50

60

Power State

A
c
t
i
v
a
t
i
o
n
T
i
m
e
[
µ
s
]

3.23 3.2 −0
.0
3 8.58

+5
.3
6

26.5

+2
3
.2
7

29.24

+2
6
.0
2

59.31

+5
6
.0
8

(a) Haswell Core i7-4790

C0 C1 C1E C3 C6 C7s C8

0

100

200

300

400

500

600

Power State

A
c
t
i
v
a
t
i
o
n
T
i
m
e
[
µ
s
]

235.87 236.01 +0
.1
4

291.28

+5
5
.4
1

403.17

+1
6
7
.3
1

413.36

+1
7
7
.4
9

429.12

+1
9
3
.2
5

577.34

+3
4
1
.4
7

(b) Skylake Core i7-6700K

Figure 5: Time between the programmedHPET interrupt and theHPET counter takenwhen resuming execution (see Section 3.3).
Individual measurements are depicted as circles with a horizontal jitter to avoid full overlap of identical values. Numbers
next to the data points indicate mean values. The additional time required for idle states is the state’s corresponding wake-up
latency (shown as red numbers).

C𝑥 instead of the more accurate CC𝑥 when it is unnecessary to

distinguish it from processor-wide PC power states.

Unfortunately, to the best of our knowledge, there is little re-

search that targets precise measurements of the characteristics of

individual idle states (see Section 5) and no openly available imple-

mentations. Hence, we cannot directly compare against existing

solutions.

4.1 Energy Consumption/Power
First, we look into the effects of the processors’ power states on their

energy consumption. In this experiment, all cores of the processor

call mwait to transition to a specific power state. Note that this is

also true for state C0. To enhance comprehension, Figure 4 shows

the average power of the processor during the measurement, i.e.,

the energy reported by RAPL divided by the 100ms duration of the

idle phase. Overall, the newer Core i7-6700K (Figure 4b) consumes

less power than the Core i7-4790 (Figure 4a) in all power states,

although the Core i7-6700K has a higher TDP.

For both processors, we observe a particularly steep decline in

power for the first two idle states, C1 and C1E; dropping from 56W

to 30W (≈ 54 % of C0’s power) to 9W (≈ 16 %) for the Core i7-4790

and from 45W to 13W (≈ 29%) to 1.7W (≈ 4%) for the Core i7-

6700K. Even though higher idle states do further reduce the proces-

sors’ power, the effect is much less pronounced. The lowest values

we observed are 5.5W (≈ 10%) for the Core i7-4790 in C7s and

1.2W (≈ 2.5 %) for the Core i7-6700K in C8. By repeating the same

experiment on the lowest DVFS setting, we verified that C1E in-

deed only reduces the processor’s frequency to its minimum. When

selecting this minimum frequency manually, states C1 and C1E

become indistinguishable with regard to power.

During our work, we discovered cores waking up before the

intended idle period was over. Whereas it is in line with the vendor

documentation [17, Vol. 2, Sec. 4.3] that “[i]mplementation-specific

conditions [. . . ] result in an interrupt causing the processor to exit

the implementation-dependent-optimized state even if interrupts

are masked [. . . ]”, such behavior would distort our measurements

if left unattended. To counteract the impact, we reenter the idle

state via mwait in cases where it returns prematurely. This issue

occurs infrequently (less than five times per measurement) and

only for idle states beyond C1/C1E. The vendor documentation



Sleep Well: Pragmatic Analysis of the Idle States of Intel Processors BDCAT ’23, December 4–7, 2023, Taormina (Messina), Italy

provides a possible explanation, stating that “A SystemManagement

Interrupt (SMI) handler returns execution to either Normal state or

the C1/C1E state.” [14, 15, Sec. 4.2.4].

When requesting mwait to use the active power state C0, the

command returns immediately. Thus, for C0, our framework ef-

fectively calls mwait in a tight loop, and we see 640 000 to 700 000

wake-ups in the 100ms measurement period.

4.2 Wake-Up Latency
Returning a core from an idle state C𝑥 to its active state C0 takes

time. The duration of this process depends on 𝑥 , as higher idle

states activate more complex energy-saving mechanisms that the

processor must reverse before it can resume its normal operation.

Figure 5 shows the time the processor takes to resume normal

execution when the HPET interrupt ends the idle phase in different

power states. For C0, this time is the overhead incurred by the

interrupt itself, which we consider the baseline. The extra time

taken in idle states is the state’s respective wake-up latency. We

calculate this wake-up latency as described in Section 3.3 by taking

precise time stamps directly when the leader core enters the C0

active state. All time stamps are based on the HPET’s counter. By

calculating the difference between the wake-up time stamp and the

configured wake-up timer interrupt, we can precisely determine

the actual latency.

Again, there is a clear difference between the two processors. The

Skylake Core i7-6700K starts with a much higher baseline (235 µs vs.

3 µs for the Haswell Core i7-4790) and, in general, exhibits higher

latencies. A thorough analysis of the cause is beyond the scope of

this paper, but we presume that changes in the Skylake microarchi-

tecture adversely affect the involved state transitions. Due to its

strong isolation properties, “Software Guard Extensions” (SGX) [5],

a feature set originally introduced with Skylake, are a likely source.

The wake-up latencies for C1 and C1E are moderate (< 5.5 µs for

the Core i7-4790 and < 56 µs for the Core i7-6700K), but higher idle

states increase these values to up to 56 µs and 342 µs, respectively.

These findings reflect our observations of the idle states’ effects

on power. The same is true for states C1 and C1E becoming indistin-

guishable, this time regarding wake-up latency, when the processor

already runs at its minimum frequency.

Although the wake-up latencies, and especially the differences

between the two processor generations, are surprising, the order

of magnitude of our measured latencies for the different idle states

is in line with other research on this topic [20, 31].

4.3 Number of Idle Cores
For SMT-capable processors like those in our setup, a core can

only enter a specific idle state when its sibling core joins it (see

Section 2.2). We were able to verify this principle by transitioning

increasing numbers of cores to an arbitrary idle state, C1 in the

example depicted in Figure 6. Active, non-idle cores run a tight busy

loop in this experiment to ensure the hardware does not transition

them to an idle state. When increasing the number of idle cores,

we first add sibling cores. So, for every even number of idle cores,

the corresponding physical cores may actually enter state C1.

The graph also illustrates how the power consumption decreases

when additional core pairs enter the idle state: For the Haswell

Core i7-4790, each pair in C1 results in an approximate reduction

of 8W, whereas for the Skylake Core i7-6700K it is about 9W.

However, the power drop is different for both processors when all

the cores become idle. The Core i7-4790 experiences a power drop

similar to other core pairs, whereas the Core i7-6700K has a higher

power drop of approximately 11W. The reason is likely a more

efficient implementation of the processor-wide idle state PC1 in the

Skylake, which becomes available once all cores enter CC1.

Note the slight difference between zero cores idling in Figure 6

and all cores being in state C0 in Figure 4. One may assume that

in both scenarios, the full processor is in state C0 executing in-

structions, thus resulting in equivalent power usage. In the given

situation, the distinction lies in the fact that for state C0 in Figure 4,

all cores continuously execute mwait. On the other hand, in Fig-

ure 6, when there are no idle cores, all cores run busy loops. The

research community is well aware that different instructions have

distinct effects on the processor’s energy consumption [28].

4.4 Internal Idle States
Even though mwait allows software to request a core’s power state

(CC-state), there are no guarantees that this state will actually

become active. In addition, processor-wide power states (PC-states)

are utterly beyond user control. Intel processors offermodel-specific

registers (MSRs), however, that allow us to monitor for how long

individual cores and the processor as a whole stayed in specific

power states [17, Vol. 4]. Using these MSRs, we can verify that

for both analyzed processors the individual cores indeed enter

the requested CC-states. Figures 7a and 7b show the fraction of

time each core remains in a particular CC-state after requesting

a specific C-state for all the processor’s cores. For simplicity and

due to the absence of significant variation between cores, we show

values aggregated across all cores. This aggregation may cause

small rounding errors, however.

The availableMSRs do not cover all idle states; neither CC1/CC1E

nor PC0 have corresponding counters. We, therefore, measure the

actual length of the idle interval and list the time unaccounted for

by the other power states as CC1/CC1E in Figures 7a and 7b and as

PC0 in Figures 7c and 7d. Minor inaccuracies may arise due to the

different time sources involved in this approach. This shortcoming

does not apply to the main contribution of our work, namely the

accurate measurement of the energy implications and wake-up

latency of idle states.

In contrast to the cores, the processor as a whole does not enter

all its idle states. Our observations are in line with the official

documentation for idle states up to C3: The processor will only

enter PC3 once all cores are at least in CC3 [14, 15, Sec. 4.2.5]. Even

with all cores residing in higher CC-states, however, we do not

observe PC states beyond PC2. A thorough analysis of the cause is

out of the scope of this paper, but likely components besides the

cores keep the processor from entering higher idle states.

Neither processor remains in higher idle states throughout the

entire idle period, and the Skylake Core i7-6700K is particularly

affected by this. This observation applies to both the CC-states and

the PC-states. One likely explanation is the execution of mwait itself.
We can only collect reference time stamps and MSR values before

running mwait, repeatedly if it returns prematurely (Section 4.1), so



BDCAT ’23, December 4–7, 2023, Taormina (Messina), Italy Till Smejkal, Jan Bierbaum, Thomas Oberhauser, Horst Schirmeier, and Hermann Härtig

0 1 2 3 4 5 6 7 8

0

10

20

30

40

50

60

70 62.66 63.62

55.37 55.27

47.29 47.57

38.92 39.04

30.52

Number of Idle Cores

P
o
w
e
r
[
W
]

(a) Haswell Core i7-4790

0 1 2 3 4 5 6 7 8

0

10

20

30

40

50

60

70

53.52 53.39

44.63 44.11

34.71 34.27

24.23 24.17

12.95

Number of Idle Cores

P
o
w
e
r
[
W
]

(b) Skylake Core i7-6700K

Figure 6: Processor power with a specific number of cores in idle state C1. Only when both sibling cores enter an idle state the
associated energy saving measure become active. Individual measurements are depicted as circles with a horizontal jitter to
avoid full overlap of identical values. Numbers next to the data points indicate mean values.

100 0.01 0.02 0.02 0.02 0.02

0 99.99 99.98 0.05 0.06 0.06

0 0 0 99.93 0 0

0 0 0 0 99.92 0

0 0 0 0 0 99.92

CC0

CC1/CC1E

CC3

CC6

CC7

C0 C1 C1E C3 C6 C7s

(a) Haswell Core i7-4790—Cores (aggregated)

99.57 0.05 0.06 0.05 0.05 0.05 0.05

0.43 99.95 99.94 0.84 0.86 0.86 0.84

0 0 0 99.11 0 0 0

0 0 0 0 99.09 0 0

0 0 0 0 0 99.09 99.11

CC0

CC1/CC1E

CC3

CC6

CC7

C0 C1 C1E C3 C6 C7s C8

(b) Skylake Core i7-6700K—Cores (aggregated)

100 100 100 0.12 0.14 0.17

0 0 0 99.88 99.86 99.83

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

PC0

PC2

PC3

PC6

PC7

C0 C1 C1E C3 C6 C7s

(c) Haswell Core i7-4790—Whole Processor

100 100 100 1.1 1.14 1.14 1.03

0 0 0 98.9 98.86 98.86 98.97

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

PC0

PC2

PC3

PC6

PC7

C0 C1 C1E C3 C6 C7s C8

(d) Skylake Core i7-6700K—Whole Processor

Figure 7: Distribution of internal idle states for the whole processor (PC𝑥) and its cores (CC𝑥) by requested idle state. The same
idle state was requested for all cores. Darker shades of color correspond to more time spent in a particular state. The number
inside each field gives the percentage of time the processor remained in the respective state. Due to the measurement approach
and aggregation over individual cores, there may be small inaccuracies in the results.



Sleep Well: Pragmatic Analysis of the Idle States of Intel Processors BDCAT ’23, December 4–7, 2023, Taormina (Messina), Italy

the processor remains in C0 for this short period of time. Another

option is that the processor “progressively” transitions to higher

idle states when additional power-saving mechanisms activate.

4.5 Generalizability of the Framework
Due to space constraints, this paper only discusses the results of

two specific Intel systems— a Haswell Core i7-4790 and a Skylake

Core i7-6700K. We also ran measurements on other processors to

verify the generalizability of our framework. For example, we also

applied our framework to an Intel Haswell Core i5-4300U. This

system is designed for mobile use, has a low thermal design power

of 15W and supports idle states up to C10.

The results from this Core i5-4300U show similar trends as those

we present for the Core i7-4790: Deeper idle states decrease the

processor’s average power consumption from ≈ 11.7W in C0 to

≈ 2.9W (≈ 24.8 % of C0’s power) starting from C7s. The correspond-

ing wake-up latencies increase from ≈ 0.5 µs for C1 and ≈ 2 µs for

C1E to ≈ 64.6 µs for C10. Like the results presented in this paper,

the measurements of the Haswell Core i5-4300U are very stable.

Even though both processors feature the Haswell microarchitec-

ture, their characteristics vary significantly. This example shows

that coarse heuristics are insufficient for the idle governor to make

optimal decision. Our framework can provide reliable and precise

data for the very processor installed in a given system.

5 RELATEDWORK
The subject of x86 idle states and how to use them to save energy has

been a heavily discussed research topic for over a decade. We differ-

entiate the existing research into two main directions: (1) analysis

of the properties of hardware performance states and (2) applying

idle states to save energy during periods of minor system load.

Analysing Properties of Idle and Performance States. Hackenberg,
Schöne, Ilsche, et al. have provided detailed analyses of the wake-up

latencies and power consumptions of idle states available in modern

x86 Intel processors [8, 13, 25, 27] as well as AMD processors of

the Zen 2 generation [26]. Their method relies on user-space mea-

surements and statistical methods, however, which increases the

required measurement times and limits achievable accuracy. In con-

trast, ourmeasurement framework tightly controls the environment

to prevent noise from other hardware and software components.

This setup allows us to acquire as precise measurements as possible.

A similar approach for a slightly different target was taken by

Mazouz et al. [21]. They analyze the switching latency between

different processor frequencies (DVFS performance states) of vari-

ous Intel microarchitectures. Like Hackenberg et al., they base their

work on statistical analysis of user space measurements, which

limits their resilience to noise.

An analysis of the effect of idling outside the realm of powerful

x86 Intel processors, which our work tackles, was done by Daud

et al. [6]. In their work, they examine the energy consumption of

embedded processors when idling and under load. They conclude

that proper idle management in embedded devices can save signif-

icant amounts of energy and improve the overall usability of the

devices due to the usually limited battery capacity.

Compared to the existing related work, our approach is a signifi-

cant step forward because we are able to obtain very precise and

reliable properties of idle states in a few seconds without manual

intervention.

Using Idle States for Saving Energy. With modern processors, it

has become common to use idle states to reduce the overall system

energy consumption during idle periods. Various research groups

tackled the problem of how to balance the relatively high wake-up

latencies of idle states with the tight latency requirements for the

completion of requests common in cloud environments. Examples

include the work of Yahya et al. [31] and Antoniou et al. [1], who

both envision a different idle-state hierarchy that is more com-

patible with the completion-latency requirements in the cloud. In

their work, they propose to extend the typical idle states of x86

processors with additional ones that have better properties regard-

ing power consumption and wake-up latency by using different

hardware power-saving techniques.

Duan et al. take a different approach to achieve a similar goal [7].

They propose to integrate an idle-time prediction algorithm into

the idle governor of the operating system and thereby select better-

suited idle states. Instead of selecting as-high-as-possible idle states,

they argue to use idle states whose wake-up latency matches the

expected usage pattern of the system.

Changing the heuristics of the idle governor of the Linux ker-

nel in order to use different idle states was also done by Ilsche et

al. [12]. They identified problems in the default Linux idle governor

that led to inefficiencies in the overall system energy consumption

while idling. The idle governor mispredicted when the next sys-

tem job will require an active processor core and, hence, selected a

non-optimal idle state and wake-up timer. This combination led to

significantly higher energy consumption while idling, thus wasting

energy.

The work of Paya and Marinescu tries to tackle the problem of

non-optimally-selected system idle states in cloud environments

from another direction [23]. They consider the properties of the idle

states available in the system already at the point in timewhenwork

gets distributed in the cloud. Instead of distributing work equally

within the data center, they propose to leave servers explicitly idle

so that they can enter higher idle states and thus save more energy.

All the discussed related work differs from our approach, as

we focus on gathering a reliable ground truth of the properties

of the processor’s idle states. Our framework’s measurements can

improve those discussed in related work, as our results are more

accurate and stable than existing approaches.

6 CONCLUSION
In this paper, we described our novel approach for precisely an-

alyzing the energy consumption and wake-up latency of the idle

states of contemporary Intel x86 processors. We implemented a

framework
4
that can automatically evaluate the available idle states

in a closely controlled environment, free of disturbance from sys-

tem noise and shielded as good as possible from other software

influences. To show the practicality of our implementation, we an-

alyzed two different Intel processors from the Haswell and Skylake

4
https://github.com/TUD-OS/SleepWell

https://github.com/TUD-OS/SleepWell


BDCAT ’23, December 4–7, 2023, Taormina (Messina), Italy Till Smejkal, Jan Bierbaum, Thomas Oberhauser, Horst Schirmeier, and Hermann Härtig

generations— an Intel Core i7-4790 and an Intel Core i7-6700K,

respectively. Our results demonstrate that our framework can mea-

sure the wake-up latency and power consumption of the idle states

with very high precision and close to no variance. We could further

verify the influence of sibling cores (SMT, Intel Hyper-Threading)

on idle states and identify which processor-internal idle states (core

CC-states and processor PC-states) the hardware transitions to.

Fullymeasuring a processor takes our framework less than 20 sec-

onds, so it could be integrated into the installation procedure of

the operating system to provide the idle governor with a solid

foundation for its decisions. The idle governor would no longer

have to rely on sub-optimal heuristics or incomplete information

from an ACPI table to make decisions. Instead, it can use accurate

measurements of the actual hardware.

Future Work. We plan to extend and generalize our framework

to other x86 processor vendors (e.g., AMD) and even completely

different architectures, such as Arm or RISC-V. As RAPL or similar

energy measurement facilities are not necessarily available on other

platforms, we want to enable the integration of external energy and

power metering infrastructure. This extension will make our frame-

work even more flexible but requires more complex handling and

synchronization in the measurement routine. For direct practical

application, we would like to completely embed our framework in

an operating system kernel and use the results of the measurements

to improve the idle governor and its idle-state selection algorithm.

Furthermore, we want to analyze the impact of the wake-up

source on the characteristics of the idle states. To this end, we

plan to complement the HPET interrupts used in this paper with

techniques such as the local APIC timer interrupts and writes to

the monitored memory region from a different processor socket.

ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers for their

time and constructive comments. We are also grateful for our col-

league Maksym Planeta’s help in improving the paper’s quality and

presentation. This research was co-financed by the Federal Ministry

of Education and Research of Germany in the program of “Souverän.

Digital. Vernetzt.” (joint project 6G-life, project ID 16KISK001K)

and by public funding from the state of Saxony/Germany.

REFERENCES
[1] G. Antoniou, H. Volos, D. B. Bartolini, T. Rollet, Y. Sazeides, and J. H. Yahya.

2022. AgilePkgC: an agile system idle state architecture for energy proportional

datacenter servers. (2022). doi: 10.1109/MICRO56248.2022.00065.

[2] L. A. Barroso, U. Hölzle, and P. Ranganathan. 2019. The Datacenter as a Com-
puter: Designing Warehouse-scale Machines. Springer Nature.

[3] J. Chapel. 2020. The cloud is booming — but so is cloud waste. (Mar. 4, 2020).

Retrieved July 23, 2023 from https://devops.com/the-cloud-is-booming-but-

so-is-cloud-waste/.

[4] M. Colmant, M. Kurpicz, P. Felber, L. Huertas, R. Rouvoy, and A. Sobe. 2015.

Process-level power estimation in VM-based systems. In Proceedings of the Tenth
European Conference on Computer Systems (EuroSys ’15). European Conference

on Computer Systems. ACM, Bordeaux, France, (Apr. 2015). isbn: 978-1-4503-

3238-5. doi: 10.1145/2741948.2741971.

[5] V. Costan and S. Devadas. 2016. Intel SGX explained. (2016). https://eprint.iacr.

org/2016/086.

[6] S. Daud, R. B. Ahmad, O. B. Lynn, Z. I. Abd Kareem, L. Munirah Kamarudin,

P. Ehkan, M. N. M. Warip, and R. R. Othman. 2014. The effects of CPU load

& idle state on embedded processor energy usage. In 2014 2nd International
Conference on Electronic Design (ICED), 30–35. doi: 10.1109/ICED.2014.7015766.

[7] L. Duan, D. Zhan, and J. Hohnerlein. 2015. Optimizing Cloud Data Center

Energy Efficiency via Dynamic Prediction of CPU Idle Intervals. In 2015 IEEE
8th International Conference on Cloud Computing, 985–988. doi: 10.1109/CLOUD.
2015.133.

[8] D. Hackenberg, R. Schöne, T. Ilsche, D. Molka, J. Schuchart, and R. Geyer. 2015.

An energy efficiency feature survey of the Intel Haswell processor. In (IPDPSW

’15). IEEE International Parallel and Distributed Processing Symposium Work-

shop. IEEE, Hyderabad, India, (May 2015), 896–904. isbn: 978-1-4673-7684-6.

doi: 10.1109/IPDPSW.2015.70.

[9] M. Hähnel, B. Döbel, M. Völp, and H. Härtig. 2012. Measuring energy con-

sumption for short code paths using RAPL. ACM SIGMETRICS Performance
Evaluation Review, 40, 3, (Jan. 2012), 13–17. doi: 10.1145/2425248.2425252.

[10] D. Hardy, M. Kleanthous, I. Sideris, A. G. Saidi, E. Ozer, and Y. Sazeides. 2013.

An analytical framework for estimating TCO and exploring data center design

space. In 2013 IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS). IEEE, 54–63.

[11] C.-H. Hsu, Q. Deng, J. Mars, and L. Tang. 2018. Smoothoperator: reducing power

fragmentation and improving power utilization in large-scale datacenters.

In Proceedings of the Twenty-Third International Conference on Architectural
Support for Programming Languages and Operating Systems, 535–548.

[12] T. Ilsche, M. Hähnel, R. Schöne, M. Bielert, and D. Hackenberg. 2017. Pow-

ernightmares: the challenge of efficiently using sleep states on multi-core

systems. In Proceedings of the Workshop on Runtime and Operating Systems for
the Many-Core Era (ROME ’17). Workshop on Runtime and Operating Systems

for the Many-Core Era. Springer, Santiago de Compostela, Spain, (Aug. 2017),

623–635. isbn: 978-3-319-75177-1. doi: 10.1007/978-3-319-75178-8.

[13] T. Ilsche, R. Schöne, P. Joram, M. Bielert, and A. Gocht. 2018. Systemmonitoring

with lo2s: power and runtime impact of C-state transitions. In (IPDPSW ’18).

IEEE International Parallel and Distributed Processing Symposium Workshops.

IEEE, Vancouver, BC, Canada, (May 2018), 712–715. isbn: 978-1-5386-5555-9.

doi: 10.1109/IPDPSW.2018.00114.

[14] Intel Corporation. 2022. 6th Generation Intel® Core™ Processor Family: Datasheet
- Volume 1. (Feb. 2022). 164 pp. Retrieved July 23, 2023 from https://www.intel.

com/content/www/us/en/content-details/332687/6th-generation-intel-core-

processor-family-datasheet-volume-1.html.

[15] Intel Corporation. 2015. Desktop 4th Generation Intel® Core™ Processor Family,
Desktop Intel® Pentium® Processor Family, and Desktop Intel® Celeron® Processor
Family: Datasheet – Volume 1 of 2. (Mar. 2015). 125 pp. Retrieved July 23, 2023

from https://cdrdv2.intel.com/v1/dl/getContent/328897?fileName=4th-gen-

core-family-desktop-vol-1-datasheet.pdf.

[16] Intel Corporation. 2004. IA-PC HPET (High Precision Event Timers) Specification.
(Oct. 2004). 33 pp. https://www.intel.com/content/dam/www/public/us/

en/documents/technical- specifications/software-developers-hpet- spec-1-

0a.pdf.

[17] Intel Corporation. 2022. Intel 64 and IA-32 Architectures Software Developer’s
Manual. (Dec. 2022). 5060 pp. https://software.intel.com/en-us/download/intel-

64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-

3c-3d-and-4.

[18] J. Koomey, K. Brill, P. Turner, J. Stanley, and B. Taylor. 2007. A Simple Model for

Determining True Total Cost of Ownership for Data Centers. Uptime Institute
White Paper, Version, 2, 2007.

[19] M. Koot and F. Wijnhoven. 2021. Usage impact on data center electricity needs:

a system dynamic forecasting model. Applied Energy, 291, 116798. doi: 10.1016/
j.apenergy.2021.116798.

[20] N. Kurd et al. 2015. Haswell: A Family of IA 22 nm Processors. IEEE Journal of
Solid-State Circuits, 50, 1, 49–58. doi: 10.1109/JSSC.2014.2368126.

[21] A. Mazouz, A. Laurent, B. Pradelle, and W. Jalby. 2014. Evaluation of CPU

frequency transition latency. Computer Science-Research and Development, 29,
3-4, 187–195.

[22] P. R. Panda, B. V. N. Silpa, A. Shrivastava, and K. Gummidipudi. 2010. Power-
Efficient System Design. Springer Science & Business Media.

[23] A. Paya and D. C. Marinescu. 2017. Energy-aware load balancing and applica-

tion scaling for the cloud ecosystem. IEEE Transactions on Cloud Computing, 5,
1, 15–27. doi: 10.1109/TCC.2015.2396059.

[24] Rafael J. Wysocki. 2017. CPU performance scaling — the Linux kernel docu-

mentation. (2017). https://www.kernel.org/doc/html/latest/admin-guide/pm/

cpufreq.html.

[25] R. Schöne, T. Ilsche, M. Bielert, A. Gocht, and D. Hackenberg. 2019. Energy

efficiency features of the Intel Skylake-SP processor and their impact on per-

formance. In International Conference on High Performance Computing & Sim-
ulation (HPCS ’19). IEEE, Dublin, Ireland, (July 2019), 399–406. isbn: 978-1-

72814-484-9. doi: 10.1109/HPCS48598.2019.9188239.

[26] R. Schöne, T. Ilsche, M. Bielert, M. Velten, M. Schmidl, and D. Hackenberg.

2021. Energy Efficiency Aspects of the AMD Zen 2 Architecture. In 2021 IEEE
International Conference on Cluster Computing (CLUSTER), 562–571. doi: 10.
1109/Cluster48925.2021.00087.

https://doi.org/10.1109/MICRO56248.2022.00065
https://devops.com/the-cloud-is-booming-but-so-is-cloud-waste/
https://devops.com/the-cloud-is-booming-but-so-is-cloud-waste/
https://doi.org/10.1145/2741948.2741971
https://eprint.iacr.org/2016/086
https://eprint.iacr.org/2016/086
https://doi.org/10.1109/ICED.2014.7015766
https://doi.org/10.1109/CLOUD.2015.133
https://doi.org/10.1109/CLOUD.2015.133
https://doi.org/10.1109/IPDPSW.2015.70
https://doi.org/10.1145/2425248.2425252
https://doi.org/10.1007/978-3-319-75178-8
https://doi.org/10.1109/IPDPSW.2018.00114
https://www.intel.com/content/www/us/en/content-details/332687/6th-generation-intel-core-processor-family-datasheet-volume-1.html
https://www.intel.com/content/www/us/en/content-details/332687/6th-generation-intel-core-processor-family-datasheet-volume-1.html
https://www.intel.com/content/www/us/en/content-details/332687/6th-generation-intel-core-processor-family-datasheet-volume-1.html
https://cdrdv2.intel.com/v1/dl/getContent/328897?fileName=4th-gen-core-family-desktop-vol-1-datasheet.pdf
https://cdrdv2.intel.com/v1/dl/getContent/328897?fileName=4th-gen-core-family-desktop-vol-1-datasheet.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/technical-specifications/software-developers-hpet-spec-1-0a.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/technical-specifications/software-developers-hpet-spec-1-0a.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/technical-specifications/software-developers-hpet-spec-1-0a.pdf
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4
https://doi.org/10.1016/j.apenergy.2021.116798
https://doi.org/10.1016/j.apenergy.2021.116798
https://doi.org/10.1109/JSSC.2014.2368126
https://doi.org/10.1109/TCC.2015.2396059
https://www.kernel.org/doc/html/latest/admin-guide/pm/cpufreq.html
https://www.kernel.org/doc/html/latest/admin-guide/pm/cpufreq.html
https://doi.org/10.1109/HPCS48598.2019.9188239
https://doi.org/10.1109/Cluster48925.2021.00087
https://doi.org/10.1109/Cluster48925.2021.00087


Sleep Well: Pragmatic Analysis of the Idle States of Intel Processors BDCAT ’23, December 4–7, 2023, Taormina (Messina), Italy

[27] R. Schöne, D. Molka, and M. Werner. 2015. Wake-up latencies for processor idle

states on current x86 processors. Computer Science - Research and Development,
30, 2, (May 2015), 219–227. doi: 10.1007/s00450-014-0270-z.

[28] T. Smejkal, M. Hähnel, T. Ilsche, M. Roitzsch, W. E. Nagel, and H. Härtig. 2017.

E-Team: practical energy accounting for multi-core systems. In Proceedings of
the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX
ATC ’17). USENIX Annual Technical Conference. USENIX Association, Santa

Clara, CA, USA, (July 2017), 589–601. isbn: 978-1-931971-38-6. https://www.

usenix.org/conference/atc17/technical-sessions/presentation/smejkal.

[29] UEFI Forum, Inc. 2022. Advanced Configuration and Power Interface (ACPI)
Specification. (Release 6.5 ed.). (Aug. 29, 2022). 1126 pp. https://uefi.org/sites/
default/files/resources/ACPI_Spec_6_5_Aug29.pdf.

[30] R. J. Wysocki. 2018. CPU idle time management — the Linux kernel documen-

tation. (2018). Retrieved July 23, 2023 from https://www.kernel.org/doc/html/

latest/admin-guide/pm/cpuidle.html.

[31] J. H. Yahya et al. 2022. AgileWatts: an energy-efficient CPU core idle-state

architecture for latency-sensitive server applications. In 2022 55th IEEE/ACM
International Symposium on Microarchitecture (MICRO), 835–850. doi: 10.1109/
MICRO56248.2022.00063.

https://doi.org/10.1007/s00450-014-0270-z
https://www.usenix.org/conference/atc17/technical-sessions/presentation/smejkal
https://www.usenix.org/conference/atc17/technical-sessions/presentation/smejkal
https://uefi.org/sites/default/files/resources/ACPI_Spec_6_5_Aug29.pdf
https://uefi.org/sites/default/files/resources/ACPI_Spec_6_5_Aug29.pdf
https://www.kernel.org/doc/html/latest/admin-guide/pm/cpuidle.html
https://www.kernel.org/doc/html/latest/admin-guide/pm/cpuidle.html
https://doi.org/10.1109/MICRO56248.2022.00063
https://doi.org/10.1109/MICRO56248.2022.00063

	Abstract
	1 Introduction
	2 Energy-Related Processor Features
	2.1 DVFS
	2.2 Idle States
	2.3 monitor/mwait
	2.4 Energy Measurement via RAPL

	3 Methodology
	3.1 Controlling the Environment
	3.2 Controlling the Idle and Wake Up
	3.3 Accurate Measurements

	4 Results
	4.1 Energy Consumption/Power
	4.2 Wake-Up Latency
	4.3 Number of Idle Cores
	4.4 Internal Idle States
	4.5 Generalizability of the Framework

	5 Related Work
	6 Conclusion
	Acknowledgments

