Selective lengthening of the cell cycle in the neurogenic subpopulation of neural progenitor cells during mouse brain development

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

  • Federico Calegari - , Max Planck Institute of Molecular Cell Biology and Genetics (Author)
  • Wulf Haubensak - (Author)
  • Christiane Haffner - (Author)
  • Wieland B. Huttner - (Author)

Abstract

During embryonic development of the mammalian brain, the average cell-cycle length of progenitor cells in the ventricular zone is known to increase. However, for any given region of the developing cortex and stage of neurogenesis, the length of the cell cycle is thought to be similar in the two coexisting subpopulations of progenitors [i.e., those undergoing (symmetric) proliferative divisions and those undergoing (either asymmetric or symmetric) neuron-generating divisions]. Using cumulative bromodeoxyuridine labeling of Tis21-green fluorescent protein knock-in mouse embryos, in which these two subpopulations of progenitors can be distinguished in vivo, we now show that at the onset as well as advanced stages of telencephalic neurogenesis, progenitors undergoing neuron-generating divisions are characterized by a significantly longer cell cycle than progenitors undergoing proliferative divisions. In addition, we find that the recently characterized neuronal progenitors dividing at the basal side of the ventricular zone and in the subventricular zone have a longer G(2) phase than those dividing at the ventricular surface. These findings are consistent with the hypothesis (Calegari and Huttner, 2003) that cell-cycle lengthening can causally contribute to neural progenitors switching from proliferative to neuron-generating divisions and may have important implications for the expansion of somatic stem cells in general.

Details

Original languageEnglish
Pages (from-to)6533-6538
Number of pages6
JournalThe Journal of neuroscience : the official journal of the Society for Neuroscience
Volume25
Issue number28
Publication statusPublished - 13 Jul 2005
Peer-reviewedYes
Externally publishedYes

External IDs

PubMedCentral PMC6725437
Scopus 22244492586

Keywords

Keywords

  • Animals, Brain/cytology, Cell Cycle, Cell Differentiation, Cell Division, Gene Expression Regulation, Developmental, Genes, Reporter, Genes, Tumor Suppressor, Gestational Age, Green Fluorescent Proteins/analysis, Immediate-Early Proteins/analysis, Mice, Mice, Inbred C57BL, Neuroglia/cytology, Neurons/cytology, Recombinant Fusion Proteins/analysis, Stem Cells/cytology, Telencephalon/cytology, Time Factors, Tumor Suppressor Proteins