Rainbow Differential Privacy

Research output: Contribution to book/Conference proceedings/Anthology/ReportConference contributionContributedpeer-review

Contributors

  • Ziqi Zhou - , Technical University of Berlin (Author)
  • Onur Günlü - , University of Siegen (Author)
  • Rafael G.L. D'Oliveira - , Clemson University (Author)
  • Muriel Médard - , Massachusetts Institute of Technology (MIT) (Author)
  • Parastoo Sadeghi - , University of New South Wales (Author)
  • Rafael F. Schaefer - , University of Siegen (Author)

Abstract

We extend a previous framework for designing differentially private (DP) mechanisms via randomized graph colorings that was restricted to binary functions, corresponding to colorings in a graph, to multi-valued functions. As before, datasets are nodes in the graph and any two neighboring datasets are connected by an edge. In our setting, we assume that each dataset has a preferential ordering for the possible outputs of the mechanism, each of which we refer to as a rainbow. Different rainbows partition the graph of datasets into different regions. We show that if the DP mechanism is pre-specified at the boundary of such regions and behaves identically for all same-rainbow boundary datasets, at most one optimal such mechanism can exist and the problem can be solved by means of a morphism to a line graph. We then show closed form expressions for the line graph in the case of ternary functions. Treatment of ternary queries in this paper displays enough richness to be extended to higher-dimensional query spaces with preferential query ordering, but the optimality proof does not seem to follow directly from the ternary proof.

Details

Original languageEnglish
Title of host publication2022 IEEE International Symposium on Information Theory, ISIT 2022
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages614-619
Number of pages6
ISBN (electronic):978-1-6654-2159-1
Publication statusPublished - 2022
Peer-reviewedYes
Externally publishedYes

Publication series

SeriesIEEE International Symposium on Information Theory
Volume2022-June
ISSN2157-8095

Conference

Title2022 IEEE International Symposium on Information Theory, ISIT 2022
Duration26 June - 1 July 2022
CityEspoo
CountryFinland

External IDs

ORCID /0000-0002-1702-9075/work/165878338