Rainbow Differential Privacy
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
We extend a previous framework for designing differentially private (DP) mechanisms via randomized graph colorings that was restricted to binary functions, corresponding to colorings in a graph, to multi-valued functions. As before, datasets are nodes in the graph and any two neighboring datasets are connected by an edge. In our setting, we assume that each dataset has a preferential ordering for the possible outputs of the mechanism, each of which we refer to as a rainbow. Different rainbows partition the graph of datasets into different regions. We show that if the DP mechanism is pre-specified at the boundary of such regions and behaves identically for all same-rainbow boundary datasets, at most one optimal such mechanism can exist and the problem can be solved by means of a morphism to a line graph. We then show closed form expressions for the line graph in the case of ternary functions. Treatment of ternary queries in this paper displays enough richness to be extended to higher-dimensional query spaces with preferential query ordering, but the optimality proof does not seem to follow directly from the ternary proof.
Details
Originalsprache | Englisch |
---|---|
Titel | 2022 IEEE International Symposium on Information Theory, ISIT 2022 |
Herausgeber (Verlag) | Institute of Electrical and Electronics Engineers Inc. |
Seiten | 614-619 |
Seitenumfang | 6 |
ISBN (elektronisch) | :978-1-6654-2159-1 |
Publikationsstatus | Veröffentlicht - 2022 |
Peer-Review-Status | Ja |
Extern publiziert | Ja |
Publikationsreihe
Reihe | IEEE International Symposium on Information Theory |
---|---|
Band | 2022-June |
ISSN | 2157-8095 |
Konferenz
Titel | 2022 IEEE International Symposium on Information Theory, ISIT 2022 |
---|---|
Dauer | 26 Juni - 1 Juli 2022 |
Stadt | Espoo |
Land | Finnland |
Externe IDs
ORCID | /0000-0002-1702-9075/work/165878338 |
---|