Quantifying the U 5f covalence and degree of localization in U intermetallics
Research output: Contribution to journal › Research article › Contributed › peer-review
Contributors
Abstract
A procedure for quantifying the U 5f electronic covalency and degree of localization in U intermetallic compounds is presented. To this end, bulk sensitive hard and soft x-ray photoelectron spectroscopy were utilized in combination with density-functional theory (DFT) plus dynamical mean-field theory (DMFT) calculations. The energy dependence of the photoionization cross sections allows the disentanglement of the U 5f contribution to the valence band from the various other atomic subshells so the computational parameters in the DFT+DMFT can be reliably determined. Applying this method to UGa2 and UB2 as model compounds from opposite ends of the (de)localization range, we have achieved excellent simulations of the valence band and core-level spectra. The width in the distribution of atomic U 5f configurations contributing to the ground state, as obtained from the calculations, quantifies the correlated nature and degree of localization of the U 5f. The findings permit answering the longstanding question why different spectroscopic techniques give seemingly different numbers for the U 5f valence in intermetallic U compounds.
Details
Original language | English |
---|---|
Article number | 033068 |
Journal | Physical Review Research |
Volume | 6 |
Issue number | 3 |
Publication status | Published - Jun 2024 |
Peer-reviewed | Yes |