Optimization of a test bench for testing compliant elements under shear-force-free bending laod
Research output: Contribution to book/Conference proceedings/Anthology/Report › Conference contribution › Contributed › peer-review
Contributors
Abstract
As a contribution to the efficient cyclic testing of textile-reinforced compliant structures, a kinematic test rig for the static and dynamic bending test of composite stripe specimens has been developed [1]. This multifunctional six-membered linkage allows a moment application free of shear force by providing a pure bending load while bending the specimen in one direction up to 90°. During cyclic testing with a frequency of 1 or 2 Hz the progressive damage behaviour meaning the initiation and propagation of fibre breaks with increasing load cycles up to complete structural failure has been monitored using industrial computer tomography [2]. The test results showed considerable differences within the results and therefore led to a need for a modified test rig to reach higher frequencies. Hence, a new concept for a shear-force-free bending test bench has been developed which allows a periodic bending in both directions from 90° up to 90°. This paper intends to make contributions to the efficient cyclic testing of textile-reinforced compliant structures by optimizing this new mechanism structure to minimize the induced shear force.
Details
Original language | English |
---|---|
Title of host publication | Materials Science Engineering, Symposium B6 - Hybrid Structures |
Pages | 130-136 |
Number of pages | 7 |
Volume | 2 |
Publication status | Published - 2013 |
Peer-reviewed | Yes |
Publication series
Series | Procedia Materials Science |
---|---|
Volume | 2 |
ISSN | 2211-8128 |
Colloquium
Title | Materials Science Engineering, Symposium B6 - Hybrid Structures |
---|---|
Conference number | |
Duration | 25 - 27 September 2012 |
Location | |
City | Darmstadt |
Country | Germany |
External IDs
WOS | 000329160700015 |
---|---|
ORCID | /0000-0003-2834-8933/work/142238349 |
ORCID | /0000-0002-5412-2324/work/142248677 |