Numerical simulation of microcrack-induced delamination in cross-ply-laminates under static loading using cohesive zone models

Research output: Contribution to book/Conference proceedings/Anthology/ReportConference contributionContributedpeer-review

Contributors

Abstract

In this contribution, the delamination behaviour in cross-ply glass fiber reinforced composites under static tensile loading is investigated numerically using both cohesive elements and contact cohesive surfaces in the commercial finite element software ABAQUS. The laminates studied contain predefined microcracks in the embedded 90° ply, which serve as the source of delamination. Particular attention is paid to the connection of the pre-existing matrix crack tips to the cohesive zone in the [0/90] interfaces, which have a strong influence on delamination initiation and growth. The presented analysis includes different modelling approaches of microcrack-induced delamination (MCID), which are compared and critically discussed. In this relation, the different modelling approaches partly show a strong influence on the simulation results. The static MCID model can be converted to a fatigue MCID model by using a cyclic cohesive zone model.

Details

Original languageEnglish
Title of host publicationProceedings of the 20th European Conference on Composite Materials
EditorsAnastasios P. Vassilopoulos, Véronique Michaud
PublisherEcole Polytechnique Fédérale de Lausanne (EPFL)
Pages334-341
Number of pages8
Volume4
ISBN (electronic)978-2-9701614-0-0
Publication statusPublished - 12 Dec 2022
Peer-reviewedYes

Conference

Title20th European Conference on Composite Materials
SubtitleComposites Meet Sustainability
Abbreviated titleECCM 20
Conference number20
Duration26 - 30 June 2022
Website
Degree of recognitionInternational event
LocationSwissTech Convention Center
CityLausanne
CountrySwitzerland

External IDs

Scopus 85149380032
ORCID /0000-0003-1370-064X/work/142243794

Keywords

Keywords

  • Fiber Reinforced Plastics, Microcrack-induced Delamination, Cohesive Zone Model