Nonlinear analysis of the Eckhaus instability: modulated amplitude waves and phase chaos with nonzero average phase gradient
Research output: Contribution to journal › Research article › Contributed › peer-review
Contributors
Abstract
We analyze the Eckhaus instability of plane waves in the one-dimensional complex Ginzburg-Landau equation (CGLE) and describe the nonlinear effects arising in the Eckhaus unstable regime. Modulated amplitude waves (MAWs) are quasi-periodic solutions of the CGLE that emerge near the Eckhaus instability of plane waves and cease to exist due to saddle-node (SN) bifurcations. These MAWs can be characterized by their average phase gradient v and by the spatial period P of the periodic amplitude modulation. A numerical bifurcation analysis reveals the existence and stability properties of MAWs with arbitrary v and P. MAWs are found to be stable for large enough v and intermediate values of P. For different parameter values they are unstable to splitting and attractive interaction between subsequent extrema of the amplitude. Defects form from perturbed plane waves for parameter values above the SN of the corresponding MAWs. The break-down of phase chaos with average phase gradient upsilon not equal 0 ("wound-up phase chaos") is thus related to these SNs. A lower bound for the break-down of wound-up phase chaos is given by the necessary presence of SNs and an upper bound by the absence of the splitting instability of MAWs. (C) 2002 Elsevier Science B.V. All rights reserved.
Details
Original language | English |
---|---|
Pages (from-to) | 152-167 |
Number of pages | 16 |
Journal | Physica D: Nonlinear Phenomena |
Volume | 174 |
Issue number | 1-4 |
Publication status | Published - 1 Jan 2003 |
Peer-reviewed | Yes |
Externally published | Yes |
Conference
Title | International Workshop on the Complex Ginzburg-Landau Equation |
---|---|
Duration | 21 - 23 May 2001 |
City | FLORENCE |
Country | Italy |
External IDs
Scopus | 0037212936 |
---|---|
ORCID | /0000-0003-0137-5106/work/142244236 |
Keywords
Keywords
- complex Ginzburg-Landau equation, coherent structures, modulated amplitude waves, phase chaos, GINZBURG-LANDAU EQUATION, TAYLOR-DEAN SYSTEM, TRAVELING-WAVES, SPATIOTEMPORAL INTERMITTENCY, PERIODIC-SOLUTIONS, STABILITY LIMITS, TRANSITION, TURBULENCE, DYNAMICS, DEFECT