Nonlinear analysis of the Eckhaus instability: modulated amplitude waves and phase chaos with nonzero average phase gradient

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • L Brusch - , Max-Planck-Institut für Physik komplexer Systeme (Autor:in)
  • A Torcini - , Istituto Nazionale di Ottica Applicata, Università degli Studi di Firenze (Autor:in)
  • M Bar - , Max-Planck-Institut für Physik komplexer Systeme (Autor:in)

Abstract

We analyze the Eckhaus instability of plane waves in the one-dimensional complex Ginzburg-Landau equation (CGLE) and describe the nonlinear effects arising in the Eckhaus unstable regime. Modulated amplitude waves (MAWs) are quasi-periodic solutions of the CGLE that emerge near the Eckhaus instability of plane waves and cease to exist due to saddle-node (SN) bifurcations. These MAWs can be characterized by their average phase gradient v and by the spatial period P of the periodic amplitude modulation. A numerical bifurcation analysis reveals the existence and stability properties of MAWs with arbitrary v and P. MAWs are found to be stable for large enough v and intermediate values of P. For different parameter values they are unstable to splitting and attractive interaction between subsequent extrema of the amplitude. Defects form from perturbed plane waves for parameter values above the SN of the corresponding MAWs. The break-down of phase chaos with average phase gradient upsilon not equal 0 ("wound-up phase chaos") is thus related to these SNs. A lower bound for the break-down of wound-up phase chaos is given by the necessary presence of SNs and an upper bound by the absence of the splitting instability of MAWs. (C) 2002 Elsevier Science B.V. All rights reserved.

Details

OriginalspracheEnglisch
Seiten (von - bis)152-167
Seitenumfang16
FachzeitschriftPhysica D: Nonlinear Phenomena
Jahrgang174
Ausgabenummer1-4
PublikationsstatusVeröffentlicht - 1 Jan. 2003
Peer-Review-StatusJa
Extern publiziertJa

Konferenz

TitelInternational Workshop on the Complex Ginzburg-Landau Equation
Dauer21 - 23 Mai 2001
StadtFLORENCE
LandItalien

Externe IDs

Scopus 0037212936
ORCID /0000-0003-0137-5106/work/142244236

Schlagworte

Schlagwörter

  • complex Ginzburg-Landau equation, coherent structures, modulated amplitude waves, phase chaos, GINZBURG-LANDAU EQUATION, TAYLOR-DEAN SYSTEM, TRAVELING-WAVES, SPATIOTEMPORAL INTERMITTENCY, PERIODIC-SOLUTIONS, STABILITY LIMITS, TRANSITION, TURBULENCE, DYNAMICS, DEFECT