Nanowire-based metamaterials electrodes for extremely fast charge collection

Research output: Contribution to book/conference proceedings/anthology/reportConference contributionContributedpeer-review

Contributors

  • Yuyi Feng - , Beijing Institute of Technology, University of California at Berkeley (Author)
  • Paul Kim - , University of California at Berkeley (Author)
  • Clayton A. Nemitz - , University of North Carolina at Chapel Hill (Author)
  • Kwang Dae Kim - , University of Konstanz (Author)
  • Yoonseok Park - , TUD Dresden University of Technology (Author)
  • Karl Leo - , Chair of Opto-Electronics (Author)
  • James Dorman - , Louisiana State University (Author)
  • Jonas Weickert - , University of Konstanz (Author)
  • Yongtian Wang - , Beijing Institute of Technology (Author)
  • Lukas Schmidt-Mende - , University of Konstanz (Author)

Abstract

Metallic nanorod metamaterials, arrays of vertically aligned nanorods embedded in an alumina matrix (diameter ∼80 nm, length 100-250 nm, period ∼113 nm), have recently emerged as a flexible platform for applications in photonics, optoelectronics and sensing. The optical constants for these nanostructured materials are directly associated with their crystallinity. Controlling the crystallinity of these metamaterials in a fast manner has presented a new challenge. Here we show a laser annealing with a pulsed Nd:YAG laser (λ = 532 nm, FWHM 15 ns) to rapidly change the crystallinity of the metallic nanorods. The small column X-Ray diffraction characterization shows that not only the crystallinity of the metallic nanorods is changed, but also that evaporation of the metal occurs with laser annealing.

Details

Original languageEnglish
Title of host publicationProceedings of Plasmonics III 2018
Volume10824
Publication statusPublished - 2018
Peer-reviewedYes

Publication series

SeriesProceedings of SPIE - The International Society for Optical Engineering
ISSN0277-786X

Conference

TitlePlasmonics III 2018
Duration12 - 13 October 2018
CityBeijing
CountryChina

Keywords

Keywords

  • charge collection, core-shell nanowires, light harvesting, semi-transparent solar cells, silver