Nanowire-based metamaterials electrodes for extremely fast charge collection

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

  • Yuyi Feng - , Beijing Institute of Technology, University of California at Berkeley (Autor:in)
  • Paul Kim - , University of California at Berkeley (Autor:in)
  • Clayton A. Nemitz - , University of North Carolina at Chapel Hill (Autor:in)
  • Kwang Dae Kim - , Universität Konstanz (Autor:in)
  • Yoonseok Park - , Technische Universität Dresden (Autor:in)
  • Karl Leo - , Professur für Optoelektronik (Autor:in)
  • James Dorman - , Louisiana State University (Autor:in)
  • Jonas Weickert - , Universität Konstanz (Autor:in)
  • Yongtian Wang - , Beijing Institute of Technology (Autor:in)
  • Lukas Schmidt-Mende - , Universität Konstanz (Autor:in)

Abstract

Metallic nanorod metamaterials, arrays of vertically aligned nanorods embedded in an alumina matrix (diameter ∼80 nm, length 100-250 nm, period ∼113 nm), have recently emerged as a flexible platform for applications in photonics, optoelectronics and sensing. The optical constants for these nanostructured materials are directly associated with their crystallinity. Controlling the crystallinity of these metamaterials in a fast manner has presented a new challenge. Here we show a laser annealing with a pulsed Nd:YAG laser (λ = 532 nm, FWHM 15 ns) to rapidly change the crystallinity of the metallic nanorods. The small column X-Ray diffraction characterization shows that not only the crystallinity of the metallic nanorods is changed, but also that evaporation of the metal occurs with laser annealing.

Details

OriginalspracheEnglisch
TitelProceedings of Plasmonics III 2018
Band10824
PublikationsstatusVeröffentlicht - 2018
Peer-Review-StatusJa

Publikationsreihe

ReiheProceedings of SPIE - The International Society for Optical Engineering
ISSN0277-786X

Konferenz

TitelPlasmonics III 2018
Dauer12 - 13 Oktober 2018
StadtBeijing
LandChina

Schlagworte

Schlagwörter

  • charge collection, core-shell nanowires, light harvesting, semi-transparent solar cells, silver