Multiple components of plant diversity loss determine herbivore phylogenetic diversity in a subtropical forest experiment

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

  • Ming-Qiang Wang - , CAS - Institute of Botany (Author)
  • Yi Li - , CAS - Institute of Zoology (Author)
  • Douglas Chesters - , CAS - Institute of Zoology (Author)
  • Perttu Anttonen - , German Centre for Integrative Biodiversity Research (iDiv) Halle—Jena—Leipzig, Martin Luther University Halle-Wittenberg (Author)
  • Helge Bruelheide - , Martin Luther University Halle-Wittenberg, German Centre for Integrative Biodiversity Research (iDiv) Halle—Jena—Leipzig (Author)
  • Jing-Ting Chen - , CAS - Institute of Zoology (Author)
  • Walter Durka - , German Centre for Integrative Biodiversity Research (iDiv) Halle—Jena—Leipzig, Helmholtz Centre for Environmental Research (Author)
  • Peng-Fei Guo - , Guizhou University of Traditional Chinese Medicine (Author)
  • Werner Härdtle - , Leuphana University of Lüneburg (Author)
  • Keping Ma - , CAS - Institute of Botany (Author)
  • Stefan G. Michalski - , Helmholtz Centre for Environmental Research (Author)
  • Bernhard Schmid - , University of Zurich (Author)
  • Goddert von Oheimb - , Chair of Biodiversity and Nature Conservation, German Centre for Integrative Biodiversity Research (iDiv) Halle—Jena—Leipzig (Author)
  • Chun-Sheng Wu - , CAS - Institute of Zoology (Author)
  • Li-Na Zhang - , CAS - Institute of Botany (Author)
  • Qing-Song Zhou - , CAS - Institute of Zoology (Author)
  • Andreas Schuldt - , University of Göttingen (Author)
  • Chao-Dong Zhu - , CAS - Institute of Zoology, University of Chinese Academy of Sciences (Author)

Abstract


1. Plant diversity loss can alter higher trophic-level communities via non-random species interactions, which in turn may cascade to affect key ecosystem functions. These non-random linkages might be best captured by patterns of phylogenetic diversity, which take into account co-evolutionary dependencies. However, lack of adequate phylogenetic data of higher trophic levels hampers our mechanistic understanding of biodiversity relationships in species-rich ecosystems.
2. We used DNA barcoding to generate data on the phylogenetic diversity of lepidopteran caterpillars in a large-scale forest biodiversity experiment in subtropical China. We analysed how different metrics of lepidopteran phylogenetic diversity (Faith's PD, MPD, MNTD) and taxonomic diversity were influenced by multiple components of tree diversity (taxonomic, functional, phylogenetic).
3. Our data from six sampling periods represent 7,204 mitochondrial cytochrome c oxidase subunit I (COI) sequences of lepidopteran larvae, clustered into 461 molecular operational taxonomic units. Lepidopteran abundance, the effective number of species (irrespective of the focus on rare or common species) and Faith's PD and MPD (reflecting basal evolutionary splits), but not MNTD (reflecting recent evolutionary splits), significantly increased with experimentally manipulated tree species richness. Lepidopteran MNTD decreased with increasing tree MNTD. Path analyses showed that tree phylogenetic and functional diversity explained part, but not all of the effects of tree species richness on lepidopteran diversity. Importantly, tree diversity effects on lepidopteran diversity were to a large extent indirect, operating via changes in lepidopteran abundance.
4. Synthesis. Our study shows that evolutionary dependencies determine the response of herbivore communities to changes in host plant diversity. Incorporating a wider range of diversity metrics both at the level of producers and consumers can thus help to develop a more comprehensive understanding of the functional consequences of biodiversity change across trophic levels. Moreover, the dependence of trophic linkages on herbivore abundances underlines the need to address the consequences of current declines in insect abundances for ecosystem structure and functioning.

Details

Original languageEnglish
Pages (from-to)2697 - 2712
JournalJournal of Ecology
Volume107
Issue number6
Publication statusPublished - 2019
Peer-reviewedYes

External IDs

Scopus 85073613889
ORCID /0000-0001-7408-425X/work/147141703

Keywords