Multifield Modeling and Simulation of Nutrient Transport in Mechanically Stressed Meniscus Tissue
Research output: Contribution to journal › Research article › Contributed › peer-review
Contributors
Abstract
Insights into the transport mechanisms of nutrients are essential for understanding the pathophysiology of menisci. In the present work, we focus on the modeling and numerical simulation of the transport of glucose molecules in mechanically stressed meniscus tissue. Therefore, a multifield model based on the theory of porous media is created. Due to a biphasic approach, the major phases of the solid and the fluid are represented. The description of the transport processes of the uncharged nutrient molecules, such as convection and diffusion, is given by three coupled partial differential equations valid for large deformations. Numerical simulations are performed for everyday types of stress such as (I) lying, (II) two-legged stance, (III) one-legged stance, (IV) level walking, and (V) stair descending using the finite element method. The results show that diffusion is the dominant process. However, in parts of the meniscus, the delivery of glucose can be improved by convection due to mechanical loading. Based on these basic insights, the model can now be adapted to individual patient's meniscus geometries. The model can thus give insights into the suitability of loading scenarios for rehabilitation after meniscus damage.
Details
Original language | English |
---|---|
Article number | 024501 |
Number of pages | 9 |
Journal | Journal of biomechanical engineering / American Society of Mechanical Engineers, ASME |
Volume | 145 |
Issue number | 2 |
Publication status | Published - 1 Feb 2023 |
Peer-reviewed | Yes |
External IDs
PubMed | 36114163 |
---|---|
unpaywall | 10.1115/1.4055671 |
WOS | 000899240400004 |
ORCID | /0000-0002-2370-8381/work/141545326 |
ORCID | /0000-0002-0680-8073/work/170586641 |
Keywords
Research priority areas of TU Dresden
DFG Classification of Subject Areas according to Review Boards
Subject groups, research areas, subject areas according to Destatis
Sustainable Development Goals
ASJC Scopus subject areas
Keywords
- Computer Simulation, Diffusion, Finite Element Analysis, Glucose, Humans, Meniscus, Models, Biological, Nutrients, Compression, Nutrition, Vivo, Knee menisci, In-vitro, Metabolism, Articular-cartilage, Behavior, Joints