Modular Construction of Topological Interlocking Blocks—An Algebraic Approach for Resource-Efficient Carbon-Reinforced Concrete Structures
Research output: Contribution to journal › Research article › Contributed › peer-review
Contributors
Abstract
An algebraic approach to the design of resource-efficient carbon-reinforced concrete structures is presented. Interdisciplinary research in the fields of mathematics and algebra on the one hand and civil engineering and concrete structures on the other can lead to fruitful interactions and can contribute to the development of resource-efficient and sustainable concrete structures. Textile-reinforced concrete (TRC) using non-crimp fabric carbon reinforcement enables very thin and lightweight constructions and thus requires new construction strategies and new manufacturing methods. Algebraic methods applied to topological interlocking contribute to modular, reusable, and hence resource-efficient TRC structures. A modular approach to construct new interlocking blocks by combining different Platonic and Archimedean solids is presented. In particular, the design of blocks that can be decomposed into various n-prisms is the focus of this paper. It is demonstrated that the resulting blocks are highly versatile and offer numerous possibilities for the creation of interlocking assemblies, and a rigorous proof of the interlocking property is outlined.
Details
Original language | English |
---|---|
Article number | 2565 |
Journal | Buildings |
Volume | 13 |
Issue number | 10 |
Publication status | Published - 10 Oct 2023 |
Peer-reviewed | Yes |
External IDs
ORCID | /0000-0001-6666-5388/work/153109805 |
---|
Keywords
ASJC Scopus subject areas
Keywords
- Archimedean solids, carbon-reinforced concrete, computational form finding, concrete structures, Platonic solids, textile-reinforced concrete TRC, topological interlocking