Modular Construction of Topological Interlocking Blocks—An Algebraic Approach for Resource-Efficient Carbon-Reinforced Concrete Structures

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung


  • Sascha Stüttgen - , RWTH Aachen University (Autor:in)
  • Reymond Akpanya - , RWTH Aachen University (Autor:in)
  • Birgit Beckmann - , Institut für Massivbau (IMB), Professur für Massivbau, Technische Universität Dresden (Autor:in)
  • Rostislav Chudoba - , RWTH Aachen University (Autor:in)
  • Daniel Robertz - , RWTH Aachen University (Autor:in)
  • Alice C. Niemeyer - , RWTH Aachen University (Autor:in)


An algebraic approach to the design of resource-efficient carbon-reinforced concrete structures is presented. Interdisciplinary research in the fields of mathematics and algebra on the one hand and civil engineering and concrete structures on the other can lead to fruitful interactions and can contribute to the development of resource-efficient and sustainable concrete structures. Textile-reinforced concrete (TRC) using non-crimp fabric carbon reinforcement enables very thin and lightweight constructions and thus requires new construction strategies and new manufacturing methods. Algebraic methods applied to topological interlocking contribute to modular, reusable, and hence resource-efficient TRC structures. A modular approach to construct new interlocking blocks by combining different Platonic and Archimedean solids is presented. In particular, the design of blocks that can be decomposed into various n-prisms is the focus of this paper. It is demonstrated that the resulting blocks are highly versatile and offer numerous possibilities for the creation of interlocking assemblies, and a rigorous proof of the interlocking property is outlined.


PublikationsstatusVeröffentlicht - 10 Okt. 2023

Externe IDs

ORCID /0000-0001-6666-5388/work/153109805



  • Archimedean solids, carbon-reinforced concrete, computational form finding, concrete structures, Platonic solids, textile-reinforced concrete TRC, topological interlocking