Machine learning and LHC event generation

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

  • Anja Butter - , Heidelberg University , Sorbonne Université (Author)
  • Tilman Plehn - , Heidelberg University  (Author)
  • Steffen Schumann - , University of Göttingen (Author)
  • Simon Badger - , University of Turin (Author)
  • Sascha Caron - , Radboud University Nijmegen, National Institute for Subatomic Physics (Author)
  • Kyle Cranmer - , New York University (Author)
  • Francesco Armando Di Bello - , University of Rome La Sapienza (Author)
  • Etienne Dreyer - , Weizmann Institute of Science (Author)
  • Stefano Forte - , University of Milan (Author)
  • Sanmay Ganguly - , The University of Tokyo (Author)
  • Dorival Gonçalves - , Oklahoma State University (Author)
  • Eilam Gross - , Weizmann Institute of Science (Author)
  • Theo Heimel - , Heidelberg University  (Author)
  • Gudrun Heinrich - , Karlsruhe Institute of Technology (Author)
  • Lukas Heinrich - , Technical University of Munich (Author)
  • Alexander Held - , New York University (Author)
  • Stefan Höche - , Fermi National Accelerator Laboratory (Author)
  • Jessica N. Howard - , University of California at Irvine (Author)
  • Philip Ilten - , University of Cincinnati (Author)
  • Joshua Isaacson - , Fermi National Accelerator Laboratory (Author)
  • Timo Janßen - , University of Göttingen (Author)
  • Stephen Jones - , Durham University (Author)
  • Marumi Kado - , University of Rome La Sapienza, Université Paris-Saclay (Author)
  • Michael Kagan - , Stanford Linear Accelerator Center (SLAC) (Author)
  • Gregor Kasieczka - , University of Hamburg (Author)
  • Felix Kling - , German Electron Synchrotron (DESY) (Author)
  • Sabine Kraml - , Université Grenoble Alpes (Author)
  • Claudius Krause - , Rutgers - The State University of New Jersey, New Brunswick (Author)
  • Frank Krauss - , Durham University (Author)
  • Kevin Kröninger - , Dortmund University of Technology (Author)
  • Rahool Kumar Barman - , Oklahoma State University (Author)
  • Michel Luchmann - , Heidelberg University  (Author)
  • Vitaly Magerya - , Karlsruhe Institute of Technology (Author)
  • Daniel Maitre - , Durham University (Author)
  • Bogdan Malaescu - , Sorbonne Université (Author)
  • Fabio Maltoni - , Université catholique de Louvain, University of Bologna (Author)
  • Till Martini - , Humboldt University of Berlin (Author)
  • Olivier Mattelaer - , Université catholique de Louvain (Author)
  • Benjamin Nachman - , Lawrence Berkeley National Laboratory, University of California at Berkeley (Author)
  • Sebastian Pitz - , Heidelberg University  (Author)
  • Juan Rojo - , National Institute for Subatomic Physics, Vrije Universiteit Amsterdam (VU) (Author)
  • Matthew Schwartz - , Harvard University (Author)
  • David Shih - , Université Grenoble Alpes (Author)
  • Frank Siegert - , Chair of Particle Physics (Author)
  • Roy Stegeman - , University of Milan (Author)
  • Bob Stienen - , Radboud University Nijmegen (Author)
  • Jesse Thaler - , Massachusetts Institute of Technology (MIT) (Author)
  • Rob Verheyen - , University College London (Author)
  • Daniel Whiteson - , University of California at Irvine (Author)
  • Ramon Winterhalder - , Université catholique de Louvain (Author)
  • Jure Zupan - , University of Cincinnati (Author)

Abstract

First-principle simulations are at the heart of the high-energy physics research program. They link the vast data output of multi-purpose detectors with fundamental theory predictions and interpretation. This review illustrates a wide range of applications of modern machine learning to event generation and simulation-based inference, including conceptional developments driven by the specific requirements of particle physics. New ideas and tools developed at the interface of particle physics and machine learning will improve the speed and precision of forward simulations, handle the complexity of collision data, and enhance inference as an inverse simulation problem.

Details

Original languageEnglish
Article number079
JournalSciPost physics
Volume14
Issue number4
Publication statusPublished - Apr 2023
Peer-reviewedYes

Keywords

ASJC Scopus subject areas

Library keywords