Machine learning and LHC event generation

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Anja Butter - , Universität Heidelberg, Sorbonne Université (Autor:in)
  • Tilman Plehn - , Universität Heidelberg (Autor:in)
  • Steffen Schumann - , Georg-August-Universität Göttingen (Autor:in)
  • Simon Badger - , University of Turin (Autor:in)
  • Sascha Caron - , Radboud University Nijmegen, National Institute for Subatomic Physics (Autor:in)
  • Kyle Cranmer - , New York University (Autor:in)
  • Francesco Armando Di Bello - , University of Rome La Sapienza (Autor:in)
  • Etienne Dreyer - , Weizmann Institute of Science (Autor:in)
  • Stefano Forte - , Università degli Studi di Milano (Autor:in)
  • Sanmay Ganguly - , The University of Tokyo (Autor:in)
  • Dorival Gonçalves - , Oklahoma State University (Autor:in)
  • Eilam Gross - , Weizmann Institute of Science (Autor:in)
  • Theo Heimel - , Universität Heidelberg (Autor:in)
  • Gudrun Heinrich - , Karlsruher Institut für Technologie (Autor:in)
  • Lukas Heinrich - , Technische Universität München (Autor:in)
  • Alexander Held - , New York University (Autor:in)
  • Stefan Höche - , Fermi National Accelerator Laboratory (Fermilab) (Autor:in)
  • Jessica N. Howard - , University of California at Irvine (Autor:in)
  • Philip Ilten - , University of Cincinnati (Autor:in)
  • Joshua Isaacson - , Fermi National Accelerator Laboratory (Fermilab) (Autor:in)
  • Timo Janßen - , Georg-August-Universität Göttingen (Autor:in)
  • Stephen Jones - , Durham University (Autor:in)
  • Marumi Kado - , University of Rome La Sapienza, Université Paris-Saclay (Autor:in)
  • Michael Kagan - , SLAC National Accelerator Laboratory (Autor:in)
  • Gregor Kasieczka - , Universität Hamburg (Autor:in)
  • Felix Kling - , Deutsches Elektronen-Synchrotron (DESY) (Autor:in)
  • Sabine Kraml - , Université Grenoble Alpes (Autor:in)
  • Claudius Krause - , Rutgers - The State University of New Jersey, New Brunswick (Autor:in)
  • Frank Krauss - , Durham University (Autor:in)
  • Kevin Kröninger - , Technische Universität (TU) Dortmund (Autor:in)
  • Rahool Kumar Barman - , Oklahoma State University (Autor:in)
  • Michel Luchmann - , Universität Heidelberg (Autor:in)
  • Vitaly Magerya - , Karlsruher Institut für Technologie (Autor:in)
  • Daniel Maitre - , Durham University (Autor:in)
  • Bogdan Malaescu - , Sorbonne Université (Autor:in)
  • Fabio Maltoni - , Université catholique de Louvain, Università di Bologna (Autor:in)
  • Till Martini - , Humboldt-Universität zu Berlin (Autor:in)
  • Olivier Mattelaer - , Université catholique de Louvain (Autor:in)
  • Benjamin Nachman - , Lawrence Berkeley National Laboratory, University of California at Berkeley (Autor:in)
  • Sebastian Pitz - , Universität Heidelberg (Autor:in)
  • Juan Rojo - , National Institute for Subatomic Physics, Vrije Universiteit Amsterdam (VU) (Autor:in)
  • Matthew Schwartz - , Harvard University (Autor:in)
  • David Shih - , Université Grenoble Alpes (Autor:in)
  • Frank Siegert - , Professur für Teilchenphysik (Autor:in)
  • Roy Stegeman - , Università degli Studi di Milano (Autor:in)
  • Bob Stienen - , Radboud University Nijmegen (Autor:in)
  • Jesse Thaler - , Massachusetts Institute of Technology (MIT) (Autor:in)
  • Rob Verheyen - , University College London (Autor:in)
  • Daniel Whiteson - , University of California at Irvine (Autor:in)
  • Ramon Winterhalder - , Université catholique de Louvain (Autor:in)
  • Jure Zupan - , University of Cincinnati (Autor:in)

Abstract

First-principle simulations are at the heart of the high-energy physics research program. They link the vast data output of multi-purpose detectors with fundamental theory predictions and interpretation. This review illustrates a wide range of applications of modern machine learning to event generation and simulation-based inference, including conceptional developments driven by the specific requirements of particle physics. New ideas and tools developed at the interface of particle physics and machine learning will improve the speed and precision of forward simulations, handle the complexity of collision data, and enhance inference as an inverse simulation problem.

Details

OriginalspracheEnglisch
Aufsatznummer079
FachzeitschriftSciPost physics
Jahrgang14
Ausgabenummer4
PublikationsstatusVeröffentlicht - Apr. 2023
Peer-Review-StatusJa

Schlagworte

ASJC Scopus Sachgebiete

Bibliotheksschlagworte