Influence of microstructure on the variability and current percolation paths in ferroelectric hafnium oxide based neuromorphic FeFET synapses
Research output: Contribution to journal › Conference article › Contributed › peer-review
Contributors
Abstract
Hafnium oxide based ferroelectric FETs (FeFETs) are highly suitable for in-memory computing applications like neuromorphic hardware due to their CMOS compatibility, high dynamic range, low power consumption and good linearity. Device-to-device and die-to-die variability play an important role, especially due to the polycrystalline nature of ferroelectric hafnium oxide. Here, the variability of FeFET based synapses integrated in 300 mm wafers is investigated, showing low drain current variability for up to 32 states per cell. Furthermore, Si doping of HfO2 enables lower voltage amplitudes for learning compared to Zr. Finally, simulation of current percolation paths in these devices reveals more insight in the parameters affecting variability.
Details
Original language | English |
---|---|
Article number | 63 |
Journal | 2021 Silicon Nanoelectronics Workshop, SNW 2021 |
Publication status | Published - 2021 |
Peer-reviewed | Yes |
Conference
Title | 26th Silicon Nanoelectronics Workshop, SNW 2021 |
---|---|
Duration | 13 June 2021 |
City | Virtual, Online |
Country | Japan |
External IDs
ORCID | /0000-0002-2484-4158/work/142257577 |
---|