Hydraulic and electric control of cell spheroids
Research output: Contribution to journal › Research article › Contributed › peer-review
Contributors
Abstract
We use a theoretical approach to examine the effect of a radial fluid flow or electric current on the growth and homeostasis of a cell spheroid. Such conditions may be generated by a drain of micrometric diameter. To perform this analysis, we describe the tissue as a continuum. We include active mechanical, electric, and hydraulic components in the tissue material properties. We consider a spherical geometry and study the effect of the drain on the dynamics of the cell aggregate. We show that a steady fluid flow or electric current imposed by the drain could be able to significantly change the spheroid long-time state. In particular, our work suggests that a growing spheroid can systematically be driven to a shrinking state if an appropriate external field is applied. Order-of-magnitude estimates suggest that such fields are of the order of the indigenous ones. Similarities and differences with the case of tumors and embryo development are briefly discussed.
Details
Original language | English |
---|---|
Article number | e2021972118 |
Journal | Proceedings of the National Academy of Sciences of the United States of America |
Volume | 118 |
Issue number | 19 |
Publication status | Published - 11 May 2021 |
Peer-reviewed | Yes |
External IDs
PubMed | 33947815 |
---|
Keywords
ASJC Scopus subject areas
Keywords
- Continuum theory of tissues, Electrohydraulics, Multicellular spheroids, Tissue biophysics, Tissue growth