Ferroelastic control of magnetic domain structure: direct imaging by Magnetic Force Microscopy
Research output: Preprint/Documentation/Report › Preprint
Contributors
Abstract
Pyrrhotite, Fe$_7$S$_8$, provides an example of exceptionally strong magnetoelastic coupling through pinning of ferromagnetic domains by ferroelastic twins. Using direct imaging of both magnetic and ferroelastic domains by magnetic force microscopy (MFM), the mechanism by which this coupling controls local magnetic switching behaviour of regions on the pyrrhotite surface is revealed, and leads to quantitative fitting of field dependent MFM phase shifts with bulk magnetometry data. It is shown that characteristic inflection points in the magnetometry data along certain direction, in particular $[\overline 120]^*_h$ of the hexagonal parent structure, are in fact caused by ferroelastic pinning of the magnetic moments.
Details
Original language | English |
---|---|
Publication status | Published - 27 Mar 2024 |
No renderer: customAssociatesEventsRenderPortal,dk.atira.pure.api.shared.model.researchoutput.WorkingPaper
External IDs
ORCID | /0000-0002-2484-4158/work/156814172 |
---|
Keywords
Research priority areas of TU Dresden
DFG Classification of Subject Areas according to Review Boards
Keywords
- cond-mat.mtrl-sci, physics.app-ph