Excitation, Interaction, and Scattering of Localized and Propagating Surface Polaritons
Research output: Types of thesis › Doctoral thesis
Contributors
Abstract
Surface polaritons, i.e., collective oscillations of the surface charges, strongly influence the optical response at the micro- and nanoscale and have to be accounted for in modern nanotechnology. Within this thesis, certain basic phenomena involving surface polaritons are investigated by means of the semianalytical multiple-multipole (MMP) method. The results\nare compared to experiments. \n\nIn the first part, the surface plasmon resonance (SPR) of metal nanoparticles is analyzed. This resonant collective oscillation of the free electrons in a metallic nanoparticle leads to an enhancement and confinement of the local electric field at optical frequencies. The local\nelectric field can be further increased by tailoring the shape of the particle or by using near-field-interacting dimers or trimers of gold nanospheres. The hot spots found under such conditions increase the sensitivity of surface-enhanced Raman scattering by several orders of\nmagnitude and simultaneously reduce the probed volume, thereby providing single-molecule sensitivity. The sub-wavelength-confined strong electromagnetic field associated with a SPR provides the basis for scattering-type near-field optical microscopy or tip-enhanced Raman spectroscopy, where the metal particle serves as a probe that is scanned laterally in the vicinity of a substrate. The presence of the latter causes a characteristic shift of the SPR towards lower frequencies. This eect originates in the near-field interaction of the surface charges on the objects. Furthermore, the excitation of higher-order modes becomes possible in case of an excitation by a strongly inhomogeneous wave, such as an evanescent wave. These modes may significantly contribute to the near field but have only very little influence on the far-field signature.\nInstead of using resonant probes, one may place a nonresonant probe in the vicinity of a substrate having a high density of electromagnetic surface states. This also produces a resonance of the light scattering by the system. Especially polar crystals, such as the investigated silicon\ncarbide, feature such a high density of surface phonon polariton states in the mid-infrared spectral region, which can be excited due to the near-field interaction with a polarized particle. Thereby, a resonance is created leading to a strong increase of the electric field at the interface. \n\nIn the second part of the thesis, special emphasis is put on surface plasmon polaritons (SPPs). Such propagating surface waves can be excited directly by plane waves only at patterned interfaces. This process is studied for the case of a groove. The groove breaks the translational\ninvariance, so that the SPPs can be launched locally at the edges of the groove. Additionally, the mode(s) inside the groove are excited. These modes can basically be understood as metal-insulator-metal cavity modes. Their dispersion strongly depends on the groove width. The cavity behavior caused by the finite depth provides another degree of freedom for optimizing the SPP excitation by plane waves. Thin metallic films deposited on glass oer two dierent SPP waveguide modes, each of which\ncan be addressed preferentially by a proper choice of the width of the groove. The reflection, transmission, scattering, and the conversion of the modes at discontinuities such as edges, steps, barriers, and grooves can be controlled by appropriately designing the geometry at the\nnanoscale. Furthermore, the excitation of SPPs at single and multiple slits in thin-film metal waveguides on glass and their propagation and scattering is shown by scanning near-field optical experiments. Such waveguide structures oer a means for transporting light in a confined\nway. Especially triangularly shaped waveguides can be used to guide light in sub-wavelength spaces.
Details
| Original language | English |
|---|---|
| Qualification level | Dr. rer. nat. |
| Awarding Institution | |
| Supervisors/Advisors |
|
| Publication status | Published - 2006 |
No renderer: customAssociatesEventsRenderPortal,dk.atira.pure.api.shared.model.researchoutput.Thesis