Efficient derivation of a nonlinear cohesive bridging law for numerical delamination simulations under static and fatigue loading

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

Abstract

Delamination is a frequent and critical type of damage that occurs in composite structures under static and fatigue loading. This work presents a novel method to derive a nonlinear traction–separation law (TSL) for a cohesive zone model (CZM) used for delamination simulations. By solving an ordinary differential equation (ODE) resulting from the energy balance of the cohesive zone, a nonlinear TSL is directly derived from R-curves that were determined experimentally in standard quasi-static double cantilever beam (DCB) tests. A superimposed conventional bilinear TSL is required to match the initial energy release rate of the R-curves. This bilinear TSL is intended to model brittle fracture while the nonlinear part models the R-curve effects mainly caused by fiber bridging. In order to consider R-curve effects under fatigue loading conditions as well, an established fatigue CZM is embedded into both parts of the TSL using the same set of four required input parameters. The fatigue parameters are determined inversely by means of cyclic DCB tests. It is demonstrated that the numerical model is able to reproduce the force–displacement curves of the conducted quasi-static DCB tests with a higher accuracy, if the TSL is derived by the new method instead of the preexisting and commonly used J-integral approach. Furthermore, the model is able to reproduce experimental data from conducted cyclic DCB test with a limited number of input parameters which significantly decreases the effort of inverse parameter identification.

Details

Original languageEnglish
Article number119585
Number of pages15
JournalComposite Structures
Volume373
Early online date17 Sept 2025
Publication statusPublished - 1 Dec 2025
Peer-reviewedYes

External IDs

ORCID /0000-0003-1370-064X/work/192580470
ORCID /0000-0002-8122-4158/work/192581631
WOS 001575505300002

Keywords

Keywords

  • Cohesive zone model, Delamination, Fatigue damage, Fiber bridging, Fracture resistance curve