Diagrammatics for Comodule Monads
Research output: Contribution to journal › Research article › Contributed › peer-review
Contributors
Abstract
We extend Willerton's graphical calculus for bimonads to comodule monads,
a monadic interpretation of module categories over a monoidal category.
As an application, we prove a version of Tannaka–Krein duality for these structures.
a monadic interpretation of module categories over a monoidal category.
As an application, we prove a version of Tannaka–Krein duality for these structures.
Details
| Original language | English |
|---|---|
| Article number | 27 |
| Number of pages | 15 |
| Journal | Applied Categorical Structures |
| Volume | 32 |
| Issue number | 5 |
| Publication status | Published - 29 Aug 2024 |
| Peer-reviewed | Yes |
External IDs
| Scopus | 85202846997 |
|---|
Keywords
ASJC Scopus subject areas
Keywords
- 16T05, 18C15, Bimonads, Comodule monads, Graphical calculus, Module categories, Monoidal categories, primary: 18M30, secondary: 18M05