Deep learning based wiretap coding via mutual information estimation
Research output: Contribution to book/Conference proceedings/Anthology/Report › Conference contribution › Contributed › peer-review
Contributors
Abstract
Recently, deep learning of encoding and decoding functions for wireless communication has emerged as a promising research direction and gained considerable interest due to its impressive results. A specific direction in this growing field are neural network-aided techniques that work without a fixed channel model. These approaches utilize generative adversarial networks, reinforcement learning, or mutual information estimation to overcome the need of a known channel model for training. This paper focuses on the last approach and extend it to secure channel coding schemes by sampling the legitimate channel and additionally introduce security constraints for communication. This results in a mixed optimization between the mutual information estimate, the reliability of the code and its secrecy constraint. It is believed that this lays the foundation for flexible, generalizable physical layer security approaches due to its independence of specific model assumptions.
Details
Original language | English |
---|---|
Title of host publication | WiseML 2020 - Proceedings of the 2nd ACM Workshop on Wireless Security and Machine Learning |
Publisher | Association for Computing Machinery |
Pages | 74-79 |
Number of pages | 6 |
ISBN (electronic) | 978-1-4503-8007-2 |
Publication status | Published - 13 Jul 2020 |
Peer-reviewed | Yes |
Externally published | Yes |
Conference
Title | 2nd ACM Workshop on Wireless Security and Machine Learning, WiseML 2020 |
---|---|
Duration | 13 July 2020 |
City | Linz, Virtual |
Country | Austria |
External IDs
ORCID | /0000-0002-1702-9075/work/165878346 |
---|
Keywords
ASJC Scopus subject areas
Keywords
- autoencoder, deep learning, mutual information estimation, physical layer security, secure encoding