Deep learning based wiretap coding via mutual information estimation

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

  • Rick Fritschek - , Freie Universität (FU) Berlin (Autor:in)
  • Rafael F. Schaefer - , Technische Universität Berlin (Autor:in)
  • Gerhard Wunder - , Freie Universität (FU) Berlin (Autor:in)

Abstract

Recently, deep learning of encoding and decoding functions for wireless communication has emerged as a promising research direction and gained considerable interest due to its impressive results. A specific direction in this growing field are neural network-aided techniques that work without a fixed channel model. These approaches utilize generative adversarial networks, reinforcement learning, or mutual information estimation to overcome the need of a known channel model for training. This paper focuses on the last approach and extend it to secure channel coding schemes by sampling the legitimate channel and additionally introduce security constraints for communication. This results in a mixed optimization between the mutual information estimate, the reliability of the code and its secrecy constraint. It is believed that this lays the foundation for flexible, generalizable physical layer security approaches due to its independence of specific model assumptions.

Details

OriginalspracheEnglisch
TitelWiseML 2020 - Proceedings of the 2nd ACM Workshop on Wireless Security and Machine Learning
Herausgeber (Verlag)Association for Computing Machinery
Seiten74-79
Seitenumfang6
ISBN (elektronisch)978-1-4503-8007-2
PublikationsstatusVeröffentlicht - 13 Juli 2020
Peer-Review-StatusJa
Extern publiziertJa

Konferenz

Titel2nd ACM Workshop on Wireless Security and Machine Learning, WiseML 2020
Dauer13 Juli 2020
StadtLinz, Virtual
LandÖsterreich

Externe IDs

ORCID /0000-0002-1702-9075/work/165878346

Schlagworte

Schlagwörter

  • autoencoder, deep learning, mutual information estimation, physical layer security, secure encoding