Carbon fiber/epoxy composite laminates as through-thickness thermoelectric generators
Research output: Contribution to journal › Research article › Contributed › peer-review
Contributors
Abstract
This research study demonstrates a carbon fiber reinforced polymer (CFRP) composite laminate with an embedded thermoelectric (TE) enabled glass fiber (GF) ply. The TE-enabled GF functional ply was purposely laminated to create a structural through-thickness thermoelectric generator (TEG). Simultaneously, the highly conductive carbon fiber (CF) reinforcing phase served as electrodes for the device. Tellurium nanowires (NWs) were incorporated in various mass ratios in a PEDOT:PSS matrix to produce different TE pastes. The TE pastes were deposited on the GF fabrics via a facile blade coating technique. The highest power factor (57.2 μW/m.K2, in-plane Seebeck coefficient +189 μV/K) was exhibited by the coating formed by the paste with a specific mass ratio of 1:1 (Te NWs to PEDOT:PSS). The TE-enabled GF plies were employed for the manufacturing of both 10-ply unidirectional (UD), and cross-ply composite laminates. The UD laminate generated a TE voltage (VTEG) of 8.4 mV and a TE current (Isc) of 597.4 μA for 100 K through-thickness temperature difference (ΔT) i.e., a maximum power of 1.3 μW. The temperature sensing capability of the TEG-laminate was also demonstrated. Three-point bending tests indicated a ca. 10% decrease in flexural properties with the integration of the TEG functionality for the UD configuration.
Details
Original language | English |
---|---|
Article number | 109291 |
Journal | Composites science and technology |
Volume | 220 |
Publication status | Published - 22 Mar 2022 |
Peer-reviewed | Yes |
External IDs
unpaywall | 10.1016/j.compscitech.2022.109291 |
---|
Keywords
Research priority areas of TU Dresden
DFG Classification of Subject Areas according to Review Boards
Subject groups, research areas, subject areas according to Destatis
Sustainable Development Goals
ASJC Scopus subject areas
Keywords
- Carbon fiber reinforced polymer composites, Functional coatings, Large-scale thermal energy harvesting, Multifunctional composite laminates, Seebeck effect, Temperature sensor, Thermoelectric generator, Through-thickness