Biochar-augmented carbon-negative concrete
Research output: Contribution to journal › Research article › Contributed › peer-review
Contributors
Abstract
Biochar is a waste-derived carbon-based material that can sequester carbon. This study proposed a revolutionary design of carbon-negative concrete with a large volume of biochar incorporation and elaborated the roles of biochar in the cement hydration and microstructure development of biochar-augmented concrete. The total CO2 emissions and economic values of biochar-augmented concrete were, for the first time, quantified by conducting life cycle assessment and cost-benefit analysis. Biochar as aggregate in concrete promoted the cement hydration process, facilitating the formation of calcium-silicate-hydrate (C-S-H) gel and enhancing the polymerization degree of C-S-H gel via internal curing. The incorporation of supplementary cementitious materials (SCMs) in the binder further enhanced the mechanical strength of biochar-augmented concrete via time-dependent pozzolanic reaction. The life cycle assessment confirmed that the biochar incorporation significantly reduced CO2 emissions, and most importantly, the combined use of biochar and SCMs successfully achieved carbon-negative concrete production. Preliminary cost and benefit analysis illustrated that the biochar-augmented concrete could yield satisfactory overall economic profits. Considering the mechanical performance, resource availability, negative CO2 emissions, and economic profits, the 30BC-MK (with biochar as aggregate and metakaolin as a binder representing 30 wt% and 9 wt%, respectively) was the most promising mixture, which could sequester 59 kg CO2 tonne-1 and potentially generate the overall profit of 35.4 USD m−3. In summary, our novel design of biochar-augmented concrete can open up a new field of biochar application that produces technically feasible and financially profitable carbon-negative construction materials.
Details
Original language | English |
---|---|
Article number | 133946 |
Journal | Chemical engineering journal |
Volume | 431 |
Publication status | Published - 1 Mar 2022 |
Peer-reviewed | Yes |
Keywords
Research priority areas of TU Dresden
DFG Classification of Subject Areas according to Review Boards
Subject groups, research areas, subject areas according to Destatis
Sustainable Development Goals
ASJC Scopus subject areas
Keywords
- Carbon neutrality, Circular economy, Eco-friendly construction materials, Engineered biochar, Life cycle assessment, Sustainable waste management