A pseudo-memcapacitive neurotransistor for spiking neural networks

Research output: Contribution to book/conference proceedings/anthology/reportConference contributionContributedpeer-review

Abstract

In this paper, we present a pseudo-memcapacitive neurotransistor by embedding a nonvolatile, abrupt-switching memristor at the gate of an NMOS transistor to emulate neuronal integrate and fire behavior. Neural networks, implementing spike- based computing paradigms on hardware platforms, integrating memristor crossbar arrays on underlying CMOS circuitry, oper- ate similarly as neuronal networks in the human brain, which can significantly improve the time and energy efficiency of standard data processors. We demonstrate that also nonvolatile memristors can be considered to realize neuronal leaky integration and firing functionality including the neuron reset being performed intrinsically by a sufficiently discharged ’membrane’ potential at the gate of a transistor. A versatile, compact and abrupt-switching model of a nonvolatile memristor with built-in cycle-to-cycle variability is proposed, forming a pseudo-memcapacitance along with the gate capacitance and evoking conditional neuronal spike generation depending upon the properties of the input pulse train. The SPICE code of the pseudo-memcapacitive neurotransistor is applied to verify the design parameters that trigger firing. Finally, the envisaged circuit realization of the proposed design is discussed.

Details

Original languageEnglish
Title of host publication2023 12th International Conference on Modern Circuits and Systems Technologies, MOCAST 2023 - Proceedings
Pages1-5
ISBN (electronic)9798350321074
Publication statusPublished - 29 Jun 2023
Peer-reviewedYes

Publication series

SeriesInternational Conference on Modern Circuits and Systems Technologies (MOCAST)
Number12

Conference

Title12th International Conference on Modern Circuits and Systems Technologies, MOCAST 2023
Abbreviated titleMOCAST 2023
Conference number12
Duration28 - 30 June 2023
Website
Degree of recognitionInternational event
LocationConference Center of University of West Attica
CityAthens
CountryGreece

External IDs

Scopus 85166471928
Mendeley 757569a3-f62c-3f27-9af8-b8e77c68ed87
ORCID /0000-0002-1236-1300/work/142239551
ORCID /0000-0001-7436-0103/work/142240390
ORCID /0000-0003-3259-4571/work/142249670
ORCID /0000-0003-3814-0378/work/142256368

Keywords

DFG Classification of Subject Areas according to Review Boards

Subject groups, research areas, subject areas according to Destatis

Keywords

  • Pseudo-memcapacitive neurotransistor, non-volatile memristor, SPICE model, Spiking neural networks, Pseudo-memcapacitive neurotransistor, non-volatile memristor, SPICE model, Spiking neural networks, nonvolatile memristor, spiking neural networks