A Low-Power Hardware Accelerator of MFCC Extraction for Keyword Spotting in 22nm FDSOI

Research output: Contribution to book/Conference proceedings/Anthology/ReportConference contributionContributedpeer-review

Abstract

With the development of artificial intelligence, the real-time feature extraction of acoustic signals is required in a wide variety of applications, such as keyword spotting and speech recognition. Feature extraction based on Mel-frequency cepstral coefficients (MFCCs) is one of the most significant methods thereinto. A software implementation of the MFCC extraction results in relatively high power consumption and computational time limitation, often making it unsuitable for tiny battery powered devices. Therefore, an on-chip accelerator of MFCC extraction is of interest in cutting-edge scenarios. This paper presents a fixed-point low-power hardware accelerator of MFCC feature extraction implemented in 22nm FDSOI technology. It consumes an average power of 2.78µW for 1024-sample frame at a clock frequency of 1MHz. For keyword spotting, the quantized accelerator achieves an average accuracy of around 96% working along with different classification networks.

Details

Original languageEnglish
Title of host publication2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)
PublisherIEEE
Pages1-5
Number of pages5
ISBN (electronic)979-8-3503-3267-4
ISBN (print)979-8-3503-3268-1
Publication statusPublished - 13 Jun 2023
Peer-reviewedYes

Conference

Title5th IEEE International Conference on Artificial Intelligence Circuits and Systems
Abbreviated titleIEEE AICAS 2023
Conference number5
Duration11 - 13 June 2023
Website
LocationGrand Hyatt Hangzhou
CityHangzhou
CountryChina

External IDs

ORCID /0000-0002-6286-5064/work/142240675
Scopus 85166371495
Ieee 10.1109/AICAS57966.2023.10168587

Keywords

Keywords

  • Mel-frequency cepstral coefficients, acoustic signal feature extraction, digital signal processing, keyword spotting, low-power design