A Low-Power Hardware Accelerator of MFCC Extraction for Keyword Spotting in 22nm FDSOI
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
With the development of artificial intelligence, the real-time feature extraction of acoustic signals is required in a wide variety of applications, such as keyword spotting and speech recognition. Feature extraction based on Mel-frequency cepstral coefficients (MFCCs) is one of the most significant methods thereinto. A software implementation of the MFCC extraction results in relatively high power consumption and computational time limitation, often making it unsuitable for tiny battery powered devices. Therefore, an on-chip accelerator of MFCC extraction is of interest in cutting-edge scenarios. This paper presents a fixed-point low-power hardware accelerator of MFCC feature extraction implemented in 22nm FDSOI technology. It consumes an average power of 2.78µW for 1024-sample frame at a clock frequency of 1MHz. For keyword spotting, the quantized accelerator achieves an average accuracy of around 96% working along with different classification networks.
Details
Originalsprache | Englisch |
---|---|
Titel | 2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS) |
Herausgeber (Verlag) | IEEE |
Seiten | 1-5 |
Seitenumfang | 5 |
ISBN (elektronisch) | 979-8-3503-3267-4 |
ISBN (Print) | 979-8-3503-3268-1 |
Publikationsstatus | Veröffentlicht - 13 Juni 2023 |
Peer-Review-Status | Ja |
Konferenz
Titel | 5th IEEE International Conference on Artificial Intelligence Circuits and Systems |
---|---|
Kurztitel | IEEE AICAS 2023 |
Veranstaltungsnummer | 5 |
Dauer | 11 - 13 Juni 2023 |
Webseite | |
Ort | Grand Hyatt Hangzhou |
Stadt | Hangzhou |
Land | China |
Externe IDs
ORCID | /0000-0002-6286-5064/work/142240675 |
---|---|
Scopus | 85166371495 |
Ieee | 10.1109/AICAS57966.2023.10168587 |
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Mel-frequency cepstral coefficients, acoustic signal feature extraction, digital signal processing, keyword spotting, low-power design