A Low-Power Hardware Accelerator of MFCC Extraction for Keyword Spotting in 22nm FDSOI

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Abstract

With the development of artificial intelligence, the real-time feature extraction of acoustic signals is required in a wide variety of applications, such as keyword spotting and speech recognition. Feature extraction based on Mel-frequency cepstral coefficients (MFCCs) is one of the most significant methods thereinto. A software implementation of the MFCC extraction results in relatively high power consumption and computational time limitation, often making it unsuitable for tiny battery powered devices. Therefore, an on-chip accelerator of MFCC extraction is of interest in cutting-edge scenarios. This paper presents a fixed-point low-power hardware accelerator of MFCC feature extraction implemented in 22nm FDSOI technology. It consumes an average power of 2.78µW for 1024-sample frame at a clock frequency of 1MHz. For keyword spotting, the quantized accelerator achieves an average accuracy of around 96% working along with different classification networks.

Details

OriginalspracheEnglisch
Titel2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)
Herausgeber (Verlag)IEEE
Seiten1-5
Seitenumfang5
ISBN (elektronisch)979-8-3503-3267-4
ISBN (Print)979-8-3503-3268-1
PublikationsstatusVeröffentlicht - 13 Juni 2023
Peer-Review-StatusJa

Konferenz

Titel5th IEEE International Conference on Artificial Intelligence Circuits and Systems
KurztitelIEEE AICAS 2023
Veranstaltungsnummer5
Dauer11 - 13 Juni 2023
Webseite
OrtGrand Hyatt Hangzhou
StadtHangzhou
LandChina

Externe IDs

ORCID /0000-0002-6286-5064/work/142240675
Scopus 85166371495
Ieee 10.1109/AICAS57966.2023.10168587

Schlagworte

Schlagwörter

  • Mel-frequency cepstral coefficients, acoustic signal feature extraction, digital signal processing, keyword spotting, low-power design