Skip to content Skip to footer

Optimization Methods and Software

ISSNs: 1029-4937

Taylor & Francis

Scopus rating (2022): CiteScore 4.2 SJR 1.079 SNIP 1.803

Journal

Titles
  • Optimization Methods and Software
ISSNs1029-4937
Additional searchable ISSN1055-6788
PublisherTaylor & Francis
ZDB-ID1468203-5

Keywords

Related content

Toward state estimation by high gain differentiators with automatic differentiation

Röbenack, K. & Gerbet, D., 14 Mar 2024, (E-pub ahead of print) In: Optimization Methods and Software. p. 1-16

Research output: Contribution to journalResearch articleInvitedpeer-review

Nonconvex equilibrium models for energy markets: exploiting price information to determine the existence of an equilibrium

Grübel, J., Huber, O., Hümbs, L., Klimm, M., Schmidt, M. & Schwartz, A., 2023, In: Optimization Methods and Software. 38, 1, p. 153-183 31 p.

Research output: Contribution to journalResearch articleContributedpeer-review

Semismooth Newton-type method for bilevel optimization: global convergence and extensive numerical experiments

Fischer, A., Zemkoho, A. B. & Zhou, S., 2022, In: Optimization Methods and Software. 37, 5, p. 1770-1804 35 p.

Research output: Contribution to journalResearch articleContributedpeer-review

A study of one-parameter regularization methods for mathematical programs with vanishing constraints

Hoheisel, T., Pablos, B., Pooladian, A., Schwartz, A. & Steverango, L., 2020, In: Optimization Methods and Software. 2020

Research output: Contribution to journalResearch articleContributedpeer-review

Efficient optimization of hyper-parameters for least-squares support vector regression

Fischer, A., Langensiepen, G., Luig, K., Strasdat, N. & Thies, T., 2015, In: Optimization Methods and Software. 30, p. 1095-1108 14 p.

Research output: Contribution to journalResearch articleContributedpeer-review