X-ray diffraction reveals the amount of strain and homogeneity of extremely bent single nanowires

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Arman Davtyan - , Universität Siegen (Autor:in)
  • Dominik Kriegner - , Exzellenzcluster ct.qmat: Komplexität und Topologie in Quantenmaterialien, Technische Universität Dresden (Autor:in)
  • Vaclav Holy - , Karlsuniversität Prag (Autor:in)
  • Ali AlHassan - , Universität Siegen (Autor:in)
  • Ryan B. Lewis - , Paul Drude Institute for Solid State Electronics (Autor:in)
  • Spencer McDermott - , McMaster University (Autor:in)
  • Lutz Geelhaar - , Paul Drude Institute for Solid State Electronics (Autor:in)
  • Danial Bahrami - , Universität Siegen (Autor:in)
  • Taseer Anjum - , Universität Siegen (Autor:in)
  • Zhe Ren - , Lund University (Autor:in)
  • Carsten Richter - , Leibniz Institute for Crystal Growth (Autor:in)
  • Dmitri Novikov - , Deutsches Elektronen-Synchrotron (DESY) (Autor:in)
  • Julian Mueller - , Universität Siegen (Autor:in)
  • Benjamin Butz - , Universität Siegen (Autor:in)
  • Ullrich Pietsch - , Universität Siegen (Autor:in)

Abstract

Core-shell nanowires (NWs) with asymmetric shells allow for strain engineering of NW properties because of the bending resulting from the lattice mismatch between core and shell material. The bending of NWs can be readily observed by electron microscopy. Using X-ray diffraction analysis with a micro- and nano-focused beam, the bending radii found by the microscopic investigations are confirmed and the strain in the NW core is analyzed. For that purpose, a kinematical diffraction theory for highly bent crystals is developed. The homogeneity of the bending and strain is studied along the growth axis of the NWs, and it is found that the lower parts, i.e. close to the substrate/wire interface, are bent less than the parts further up. Extreme bending radii down to similar to 3 mu m resulting in strain variation of similar to 2.5% in the NW core are found.

Details

OriginalspracheEnglisch
Seiten (von - bis)1310-1320
Seitenumfang11
FachzeitschriftJournal of applied crystallography
Jahrgang53
PublikationsstatusVeröffentlicht - Okt. 2020
Peer-Review-StatusJa

Externe IDs

Scopus 85092573337

Schlagworte

Schlagwörter

  • nano-focused X-ray beams, nanowires, bent crystals, MICROSCOPY, CRYSTALS